Skip to main content

Properties of Quantum Dots: A New Nanoprobe for Bioimaging

  • Chapter
  • First Online:
Handbook of Nanomaterials Properties

Abstract

Nanobiotechnology has vast potentials to bring revolutionary progress in disease diagnosis and therapy, in which quantum dot (QD) based research has become one of the most important topics. During the past decades, QDs have been widely used in a huge number of biomedical applications, where traditional organic dyes and fluorescent proteins were the only tools available before. QDs have unique advantages including excellent fluorescence brightness and high photostability that allows for image acquisition with desirable quality. It is believed that, with the great developments in bandgap engineering and chemical synthesis of QDs and their surface biofunctionalization, QDs will play significant roles in future fundamental study and clinical applications in biomedicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 629.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 799.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Henglein A (1982) Photo-degradation and fluorescence of colloidal-cadmium sulfide in aqueous-solution. Ber Der Bunsen-Ges-Phys Chem Chem Phys 86(4):301–305

    Google Scholar 

  2. Rossetti R, Nakahara S, Brus LE (1983) Quantum size effects in the redox potentials, resonance Raman-spectra, and electronic-spectra of CdS crystallites in aqueous-solution. J Chem Phys 79(2):1086–1088

    Google Scholar 

  3. Dabbousi BO, Rodriguez Viejo J, Mikulec FV, Heine JR, Mattoussi H, Ober R et al (1997) (CdSe)ZnS core-shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites. J Phys Chem B 101(46):9463–9475

    Google Scholar 

  4. Leatherdale CA, Woo WK, Mikulec FV, Bawendi MG (2002) On the absorption cross section of CdSe nanocrystal quantum dots. J Phys Chem B 106(31):7619–7622

    Google Scholar 

  5. Niemeyer CM (2001) Nanoparticles, proteins, and nucleic acids: biotechnology meets materials science. Angew Chem-Int Ed 40(22):4128–4158

    Google Scholar 

  6. Murphy CJ (2002) Optical sensing with quantum dots. Anal Chem 74(19):520a–526a

    Google Scholar 

  7. Parak WJ, Gerion D, Pellegrino T, Zanchet D, Micheel C, Williams SC et al (2003) Biological applications of colloidal nanocrystals. Nanotechnology 14(7):R15–R27

    Google Scholar 

  8. Alivisatos P (2004) The use of nanocrystals in biological detection. Nat Biotechnol 22(1):47–52

    Google Scholar 

  9. Efros AL, Efros AL (1982) Interband absorption of light in a semiconductor sphere. Sov Phys Semicond-USSR 16(7):772–775

    Google Scholar 

  10. Ekimov AI, Onushchenko AA (1982) Quantum size effect in the optical-spectra of semiconductor micro-crystals. Sov Phys Semicond-USSR 16(7):775–778

    Google Scholar 

  11. Mansur HS, Grieser F, Marychurch MS, Biggs S, Urquhart RS, Furlong DN (1995) Photoelectrochemical properties of Q-state CdS particles in arachidic acid Langmuir-Blodgett-films. J Chem Soc-Faraday Trans 91(4):665–672

    Google Scholar 

  12. Mansur HS, Grieser F, Urquhart RS, Furlong DN (1995) Photoelectrochemical behavior of Q-state CdSxSe(1-x) particles in arachidic acid Langmuir-Blodgett-films. J Chem Soc-Faraday Trans 91(19):3399–3404

    Google Scholar 

  13. Mansur HS, Vasconcelos WL, Grieser F, Caruso F (1999) Photoelectrochemical behaviour of CdS “Q-state” semiconductor particles in 10,12-nonacosadiynoic acid polymer Langmuir-Blodgett films. J Mater Sci 34(21):5285–5291

    Google Scholar 

  14. Alivisatos AP (1996) Semiconductor clusters, nanocrystals, and quantum dots. Science 271(5251):933–937

    Google Scholar 

  15. Crouch D, Norager S, O’Brien P, Park JH, Pickett N (2003) New synthetic routes for quantum dots. Philos Trans Royal Soc Math Phys Eng Sci 361(1803):297–310

    Google Scholar 

  16. Murray CB, Norris DJ, Bawendi MG (1993) Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J Am Chem Soc 115(19):8706–8715

    Google Scholar 

  17. Algar WR, Susumu K, Delehanty JB, Medintz IL (2011) Semiconductor quantum dots in bioanalysis: crossing the valley of death. Anal Chem 83(23):8826–8837

    Google Scholar 

  18. Costa-Fernandez JM, Pereiro R, Sanz-Medel A (2006) The use of luminescent quantum dots for optical sensing. Trac-Trends Anal Chem 25(3):207–218

    Google Scholar 

  19. Manna L, Scher EC, Alivisatos AP (2000) Synthesis of soluble and processable rod-, arrow-, teardrop-, and tetrapod-shaped CdSe nanocrystals. J Am Chem Soc 122(51):12700–12706

    Google Scholar 

  20. Peng ZA, Peng XG (2001) Mechanisms of the shape evolution of CdSe nanocrystals. J Am Chem Soc 123(7):1389–1395

    Google Scholar 

  21. Peng ZA, Peng XG (2001) Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor. J Am Chem Soc 123(1):183–184

    Google Scholar 

  22. Yang YA, Wu HM, Williams KR, Cao YC (2005) Synthesis of CdSe and CdTe nanocrystals without precursor injection. Angew Chem-Int Ed 44(41):6712–6715

    Google Scholar 

  23. Du YP, Xu B, Fu T, Cai M, Li F, Zhang Y et al (2010) Near-infrared photoluminescent Ag2S quantum dots from a single source precursor. J Am Chem Soc 132(5):1470–1471

    Google Scholar 

  24. Rogach AL, Katsikas L, Kornowski A, Su DS, Eychmuller A, Weller H (1996) Synthesis and characterization of thiol-stabilized CdTe nanocrystals. Ber Bunsen-Ges-Phys Chem Chem Phys 100(11):1772–1778

    Google Scholar 

  25. Gaponik N, Talapin DV, Rogach AL, Hoppe K, Shevchenko EV, Kornowski A et al (2002) Thiol-capping of CdTe nanocrystals: an alternative to organometallic synthetic routes. J Phys Chem B 106(29):7177–7185

    Google Scholar 

  26. Rogach AL, Franzl T, Klar TA, Feldmann J, Gaponik N, Lesnyak V et al (2007) Aqueous synthesis of thiol-capped CdTe nanocrystals: state-of-the-art. J Phys Chem C 111(40):14628–14637

    Google Scholar 

  27. Rogach AL, Harrison MT, Kershaw SV, Kornowski A, Burt MG, Eychmuller A et al (2001) Colloidally prepared CdHgTe and HgTe quantum dots with strong near-infrared luminescence. Phys Status Solidi B-Basic Res 224(1):153–158

    Google Scholar 

  28. Koktysh DS, Gaponik N, Reufer M, Crewett J, Scherf U, Eychmuller A et al (2004) Near-infrared electroluminescence from HgTe nanocrystals. Chem Phys Chem 5(9):1435–1438

    Google Scholar 

  29. Osipovich NP, Shavel A, Poznyak SK, Gaponik N, Eychmuller A (2006) Electrochemical observation of the photoinduced formation of alloyed ZnSe(S) nanocrystals. J Phys Chem B 110(39):19233–19237

    Google Scholar 

  30. Wang C, Gao X, Ma Q, Su XG (2009) Aqueous synthesis of mercaptopropionic acid capped Mn2+-doped ZnSe quantum dots. J Mater Chem 19(38):7016–7022

    Google Scholar 

  31. Gill R, Zayats M, Willner I (2008) Semiconductor quantum dots for bioanalysis. Angew Chem-Int Ed 47(40):7602–7625

    Google Scholar 

  32. Chan WCW, Nie SM (1998) Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281(5385):2016–2018

    Google Scholar 

  33. Willard DM, Carillo LL, Jung J, Van Orden A (2001) CdSe-ZnS quantum dots as resonance energy transfer donors in a model protein-protein binding assay. Nano Lett 1(9):469–474

    Google Scholar 

  34. Wang SP, Mamedova N, Kotov NA, Chen W, Studer J (2002) Antigen/antibody immunocomplex from CdTe nanoparticle bioconjugates. Nano Lett 2(8):817–822

    Google Scholar 

  35. Mattoussi H, Mauro JM, Goldman ER, Anderson GP, Sundar VC, Mikulec FV et al (2000) Self-assembly of CdSe-ZnS quantum dot bioconjugates using an engineered recombinant protein. J Am Chem Soc 122(49):12142–12150

    Google Scholar 

  36. Medintz IL, Clapp AR, Mattoussi H, Goldman ER, Fisher B, Mauro JM (2003) Self-assembled nanoscale biosensors based on quantum dot FRET donors. Nat Mater 2(9):630–638

    Google Scholar 

  37. Pinaud F, King D, Moore HP, Weiss S (2004) Bioactivation and cell targeting of semiconductor CdSe/ZnS nanocrystals with phytochelatin-related peptides. J Am Chem Soc 126(19):6115–6123

    Google Scholar 

  38. Iyer G, Pinaud F, Tsay J, Weiss S (2007) Solubilization of quantum dots with a recombinant peptide from Escherichia coli. Small 3(5):793–798

    Google Scholar 

  39. Bruchez M, Moronne M, Gin P, Weiss S, Alivisatos AP (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281(5385):2013–2016

    Google Scholar 

  40. Gerion D, Pinaud F, Williams SC, Parak WJ, Zanchet D, Weiss S et al (2001) Synthesis and properties of biocompatible water-soluble silica-coated CdSe/ZnS semiconductor quantum dots. J Phys Chem B 105(37):8861–8871

    Google Scholar 

  41. Yu WW, Chang E, Falkner JC, Zhang JY, Al-Somali AM, Sayes CM et al (2007) Forming biocompatible and nonaggregated nanocrystals in water using amphiphilic polymers. J Am Chem Soc 129(10):2871–2879

    Google Scholar 

  42. Nikolic MS, Krack M, Aleksandrovic V, Kornowski A, Forster S, Weller H (2006) Tailor-made ligands for biocompatible nanoparticles. Angew Chem-Int Ed 45(39):6577–6580

    Google Scholar 

  43. Zrazhevskiy P, Sena M, Gao XH (2010) Designing multifunctional quantum dots for bioimaging, detection, and drug delivery. Chem Soc Rev 39(11):4326–4354

    Google Scholar 

  44. Medintz IL, Uyeda HT, Goldman ER, Mattoussi H (2005) Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 4(6):435–446

    Google Scholar 

  45. Wang QB, Xu Y, Zhao XH, Chang Y, Liu Y, Jiang LJ et al (2007) A facile one-step in situ functionalization of quantum dots with preserved photoluminescence for bioconjugation. J Am Chem Soc 129(20):6380–6381

    Google Scholar 

  46. Wang QB, Liu Y, Ke YG, Yan H (2008) Quantum dot bioconjugation during core-shell synthesis. Angew Chem Int Ed 47(2):316–319

    Google Scholar 

  47. Wang QB, Iancu N, Seo DK (2005) Preparation of large transparent silica monoliths with embedded photoluminescent CdSe@ZnS core/shell quantum dots. Chem Mater 17(19):4762–4764

    Google Scholar 

  48. Wang QB, Seo DK (2006) Synthesis of deep-red-emitting CdSe quantum dots and general non-inverse-square behavior of quantum confinement in CdSe quantum dots. Chem Mater 18(24):5764–5767

    Google Scholar 

  49. Hanaki K, Momo A, Oku T, Komoto A, Maenosono S, Yamaguchi Y et al (2003) Semiconductor quantum dot/albumin complex is a long-life and highly photostable endosome marker. Biochem Biophys Res Commun 302(3):496–501

    Google Scholar 

  50. Chen FQ, Gerion D (2004) Fluorescent CdSe/ZnS nanocrystal-peptide conjugates for long-term, nontoxic imaging and nuclear targeting in living cells. Nano Lett 4(10):1827–1832

    Google Scholar 

  51. Kaul Z, Yaguchi T, Kaul SC, Hirano T, Wadhwa R, Taira K (2003) Mortalin imaging in normal and cancer cells with quantum dot immuno-conjugates. Cell Res 13(6):503–507

    Google Scholar 

  52. Mansson A, Sundberg M, Balaz M, Bunk R, Nicholls IA, Omling P et al (2004) In vitro sliding of actin filaments labelled with single quantum dots. Biochem Biophys Res Commun 314(2):529–534

    Google Scholar 

  53. Ishii D, Kinbara K, Ishida Y, Ishii N, Okochi M, Yohda M et al (2003) Chaperonin-mediated stabilization and ATP-triggered release of semiconductor nanoparticles. Nature 423(6940):628–632

    Google Scholar 

  54. Jaiswal JK, Mattoussi H, Mauro JM, Simon SM (2003) Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nat Biotechnol 21(1):47–51

    Google Scholar 

  55. Mattheakis LC, Dias JM, Choi YJ, Gong J, Bruchez MP, Liu JQ et al (2004) Optical coding of mammalian cells using semiconductor quantum dots. Anal Biochem 327(2):200–208

    Google Scholar 

  56. Dubertret B, Skourides P, Norris DJ, Noireaux V, Brivanlou AH, Libchaber A (2002) In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 298(5599):1759–1762

    Google Scholar 

  57. Wu XY, Liu HJ, Liu JQ, Haley KN, Treadway JA, Larson JP et al (2003) Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat Biotechnol 21(1):41–46

    Google Scholar 

  58. Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ et al (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307(5709):538–544

    Google Scholar 

  59. Gao XH, Cui YY, Levenson RM, Chung LWK, Nie SM (2004) In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 22(8):969–976

    Google Scholar 

  60. Dahan M, Levi S, Luccardini C, Rostaing P, Riveau B, Triller A (2003) Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking. Science 302(5644):442–445

    Google Scholar 

  61. Rosenthal SJ, Tomlinson A, Adkins EM, Schroeter S, Adams S, Swafford L et al (2002) Targeting cell surface receptors with ligand-conjugated nanocrystals. J Am Chem Soc 124(17):4586–4594

    Google Scholar 

  62. Derfus AM, Chan WCW, Bhatia SN (2004) Intracellular delivery of quantum dots for live cell labeling and organelle tracking. Adv Mater 16(12):961–966

    Google Scholar 

  63. Kloepfer JA, Mielke RE, Nadeau JL (2005) Uptake of CdSe and CdSe/ZnS quantum dots into bacteria via purine-dependent mechanisms. Appl Environ Microbiol 71(5):2548–2557

    Google Scholar 

  64. Kloepfer JA, Mielke RE, Wong MS, Nealson KH, Stucky G, Nadeau JL (2003) Quantum dots as strain- and metabolism-specific microbiological labels. Appl Environ Microbiol 69(7):4205–4213

    Google Scholar 

  65. Tokumasu F, Dvorak J (2003) Development and application of quantum dots for immunocytochemistry of human erythrocytes. J Microsc-Oxf 211:256–261

    Google Scholar 

  66. Osaki F, Kanamori T, Sando S, Sera T, Aoyama Y (2004) A quantum dot conjugated sugar ball and its cellular uptake on the size effects of endocytosis in the subviral region. J Am Chem Soc 126(21):6520–6521

    Google Scholar 

  67. Nath J, Johnson KL (1998) Fluorescence in situ hybridization (FISH): DNA probe production and hybridization criteria. Biotech Histochem 73(1):6–22

    Google Scholar 

  68. Nath J, Johnson KL (2000) A review of fluorescence in situ hybridization (FISH): current status and future prospects. Biotech Histochem 75(2):54–78

    Google Scholar 

  69. Mitchell GP, Mirkin CA, Letsinger RL (1999) Programmed assembly of DNA functionalized quantum dots. J Am Chem Soc 121(35):8122–8123

    Google Scholar 

  70. Mahtab R, Harden HH, Murphy CJ (2000) Temperature- and salt-dependent binding of long DNA to protein-sized quantum dots: thermodynamics of “inorganic protein”-DNA interactions. J Am Chem Soc 122(1):14–17

    Google Scholar 

  71. Lakowicz JR, Gryczynski I, Gryczynski Z, Nowaczyk K, Murphy CJ (2000) Time-resolved spectral observations of cadmium-enriched cadmium sulfide nanoparticles and the effects of DNA oligomer binding. Anal Biochem 280(1):128–136

    Google Scholar 

  72. Gerion D, Parak WJ, Williams SC, Zanchet D, Micheel CM, Alivisatos AP (2002) Sorting fluorescent nanocrystals with DNA. J Am Chem Soc 124(24):7070–7074

    Google Scholar 

  73. Chan PM, Yuen T, Ruf F, Gonzalez-Maeso J, Sealfon SC (2005) Method for multiplex cellular detection of mRNAs using quantum dot fluorescent in situ hybridization. Nucleic Acids Res 33(18):e161

    Google Scholar 

  74. Tholouli E, Hoyland JA, Di Vizio D, O’Connell F, MacDermott SA, Twomey D et al (2006) Imaging of multiple mRNA targets using quantum dot based in situ hybridization and spectral deconvolution in clinical biopsies. Biochem Biophys Res Commun 348(2):628–636

    Google Scholar 

  75. Xiao Y, Telford WG, Ball JC, Locascio LE, Barker PE (2005) Semiconductor nanocrystal conjugates, FISH and pH. Nat Methods 2(10):723

    Google Scholar 

  76. Wu SM, Zha X, Zhang ZL, Xie HY, Tian ZQ, Peng J et al (2006) Quantum-dot-labeled DNA probes for fluorescence in situ hybridization (FISH) in the microorganism Escherichia coli. Chem Phys Chem 7(5):1062–1067

    Google Scholar 

  77. Clapp AR, Medintz IL, Mauro JM, Fisher BR, Bawendi MG, Mattoussi H (2004) Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors. J Am Chem Soc 126(1):301–310

    Google Scholar 

  78. Kagan CR, Murray CB, Bawendi MG (1996) Long-range resonance transfer of electronic excitations in close-packed CdSe quantum-dot solids. Phys Rev B 54(12):8633–8643

    Google Scholar 

  79. Medintz IL, Trammell SA, Mattoussi H, Mauro JM (2004) Reversible modulation of quantum dot photoluminescence using a protein-bound photochromic fluorescence resonance energy transfer acceptor. J Am Chem Soc 126(1):30–31

    Google Scholar 

  80. Nagasaki Y, Ishii T, Sunaga Y, Watanabe Y, Otsuka H, Kataoka K (2004) Novel molecular recognition via fluorescent resonance energy transfer using a biotin-PEG/polyamine stabilized CdS quantum dot. Langmuir 20(15):6396–6400

    Google Scholar 

  81. Oh E, Hong MY, Lee D, Nam SH, Yoon HC, Kim HS (2005) Inhibition assay of biomolecules based on fluorescence resonance energy transfer (FRET) between quantum dots and gold nanoparticles. J Am Chem Soc 127(10):3270–3271

    Google Scholar 

  82. Patolsky F, Gill R, Weizmann Y, Mokari T, Banin U, Willner I (2003) Lighting-up the dynamics of telomerization and DNA replication by CdSe-ZnS quantum dots. J Am Chem Soc 125(46):13918–13919

    Google Scholar 

  83. Clapp AR, Medintz IL, Mattoussi H (2006) Forster resonance energy transfer investigations using quantum-dot fluorophores. Chem Phys Chem 7(1):47–57

    Google Scholar 

  84. Medintz IL, Clapp AR, Brunel FM, Tiefenbrunn T, Uyeda HT, Chang EL et al (2006) Proteolytic activity monitored by fluorescence resonance energy transfer through quantum-dot-peptide conjugates. Nat Mater 5(7):581–589

    Google Scholar 

  85. Shi LF, De Paoli V, Rosenzweig N, Rosenzweig Z (2006) Synthesis and application of quantum dots FRET-based protease sensors. J Am Chem Soc 128(32):10378–10379

    Google Scholar 

  86. Hohng S, Ha T (2005) Single-molecule quantum-dot fluorescence resonance energy transfer. Chem Phys Chem 6(5):956–960

    Google Scholar 

  87. Clapp AR, Medintz IL, Fisher BR, Anderson GP, Mattoussi H (2005) Can luminescent quantum dots be efficient energy acceptors with organic dye donors? J Am Chem Soc 127(4):1242–1250

    Google Scholar 

  88. Albrechtbuehler G (1977) Phagokinetic tracks of 3 t3 cells - parallels between orientation of track segments and of cellular structures which contain actin or tubulin. Cell 12(2):333–339

    Google Scholar 

  89. Parak WJ, Boudreau R, Le Gros M, Gerion D, Zanchet D, Micheel CM et al (2002) Cell motility and metastatic potential studies based on quantum dot imaging of phagokinetic tracks. Adv Mater 14(12):882–885

    Google Scholar 

  90. Liu HY, Vu TQ (2007) Identification of quantum dot bioconjugates and cellular protein co-localization by hybrid gel blotting. Nano Lett 7(4):1044–1049

    Google Scholar 

  91. Bakalova R, Zhelev Z, Ohba H, Baba Y (2005) Quantum dot-based western blot technology for ultrasensitive detection of tracer proteins. J Am Chem Soc 127(26):9328–9329

    Google Scholar 

  92. Ornberg RL, Harper TF, Harper H (2005) Western blot analysis with quantum dot fluorescence technology: a sensitive and quantitative method for multiplexed proteomics. Nat methods 2:79–81

    Google Scholar 

  93. Gao XH, Nie SM (2004) Quantum dot-encoded mesoporous beads with high brightness and uniformity: rapid readout using flow cytometry. Anal Chem 76(8):2406–2410

    Google Scholar 

  94. Shah LS, Clark PA, Moioli EK, Stroscio MA, Mao JJ (2007) Labeling of mesenchymal stem cells by bioconjugated quantum dots. Nano Lett 7(10):3071–3079

    Google Scholar 

  95. Chattopadhyay PK, Price DA, Harper TF, Betts MR, Yu J, Gostick E et al (2006) Quantum dot semiconductor nanocrystals for immunophenotyping by polychromatic flow cytometry. Nat Med 12(8):972–977

    Google Scholar 

  96. Perfetto SP, Chattopadhyay PK, Roederer M (2004) Seventeen-colour flow cytometry: unravelling the immune system. Nat Rev Immunol 4(8):648–655

    Google Scholar 

  97. Ferrari BC, Bergquist PL (2007) Quantum dots as alternatives to organic fluorophores for Cryptosporidium detection using conventional flow cytometry and specific monoclonal antibodies: lessons learned. Cytom Part A 71A(4):265–271

    Google Scholar 

  98. Chen AA, Derfus AM, Khetani SR, Bhatia SN (2005) Quantum dots to monitor RNAi delivery and improve gene silencing. Nucleic Acids Res 33(22):e190

    Google Scholar 

  99. Edgar R, McKinstry M, Hwang J, Oppenheim AB, Fekete RA, Giulian G et al (2006) High-sensitivity bacterial detection using biotin-tagged phage and quantum-dot nanocomplexes. Proc Natl Acad Sci USA 103(13):4841–4845

    Google Scholar 

  100. Lim YT, Kim S, Nakayama A, Stott NE, Bawendi MG, Frangioni JV (2003) Selection of quantum dot wavelengths for biomedical assays and imaging. Mol Imaging 2(1):50–64

    Google Scholar 

  101. Smith AM, Mancini MC, Nie SM (2009) Bioimaging second window for in vivo imaging. Nat Nanotechnol 4(11):710–711

    Google Scholar 

  102. Frangioni JV (2003) In vivo near-infrared fluorescence imaging. Curr Opin Chem Biol 7(5):626–634

    Google Scholar 

  103. Reich G (2005) Near-infrared spectroscopy and imaging: basic principles and pharmaceutical applications. Adv Drug Deliv Rev 57(8):1109–1143

    Google Scholar 

  104. Rieger S, Kulkarni RP, Darcy D, Fraser SE, Koster RW (2005) Quantum dots are powerful multipurpose vital labeling agents in zebrafish embryos. Dev Dyn 234(3):670–681

    Google Scholar 

  105. Voura EB, Jaiswal JK, Mattoussi H, Simon SM (2004) Tracking metastatic tumor cell extravasation with quantum dot nanocrystals and fluorescence emission-scanning microscopy. Nat Med 10(9):993–998

    Google Scholar 

  106. Kim S, Lim YT, Soltesz EG, De Grand AM, Lee J, Nakayama A et al (2004) Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nat Biotechnol 22(1):93–97

    Google Scholar 

  107. Zimmer JP, Kim SW, Ohnishi S, Tanaka E, Frangioni JV, Bawendi MG (2006) Size series of small indium arsenide-zinc selenide core-shell nanocrystals and their application to in vivo imaging. J Am Chem Soc 128(8):2526–2527

    Google Scholar 

  108. Kim SW, Zimmer JP, Ohnishi S, Tracy JB, Frangioni JV, Bawendi MG (2005) Engineering InAsxP1-x/InP/ZnSe III-V alloyed core/shell quantum dots for the near-infrared. J Am Chem Soc 127(30):10526–10532

    Google Scholar 

  109. Parungo CP, Colson YL, Kim SW, Kim S, Cohn LH, Bawendi MG et al (2005) Sentinel lymph node mapping of the pleural space. Chest 127(5):1799–1804

    Google Scholar 

  110. Parungo CP, Soybel DI, Colson YL, Kim SW, Ohnishi S, DeGrand AM et al (2007) Lymphatic drainage of the peritoneal space: a pattern dependent on bowel lymphatics. Ann Surg Oncol 14(2):286–298

    Google Scholar 

  111. Frangioni JV, Kim SW, Ohnishi S, Kim S, Bawendi MG (2007) Sentinel lymph node mapping with type-II quantum dots. Methods Mol Biol 374:147–159

    Google Scholar 

  112. Soltesz EG, Kim S, Laurence RG, DeGrand AM, Parungo CP, Dor DM et al (2005) Intraoperative sentinel lymph node mapping of the lung using near-infrared fluorescent quantum dots. Ann Thorac Surg 79(1):269–277

    Google Scholar 

  113. Parungo CP, Ohnishi S, Kim SW, Kim S, Laurence RG, Soltesz EG et al (2005) Intraoperative identification of esophageal sentinel lymph nodes with near-infrared fluorescence imaging. J Thorac Cardiov Surg 129(4):844–850

    Google Scholar 

  114. Soltesz EG, Kim S, Kim SW, Laurence RG, De Grand AM, Parungo CP et al (2006) Sentinel lymph node mapping of the gastrointestinal tract by using invisible light. Ann Surg Oncol 13(3):386–396

    Google Scholar 

  115. Kobayashi H, Hama Y, Koyama Y, Barrett T, Regino CAS, Urano Y et al (2007) Simultaneous multicolor imaging of five different lymphatic basins using quantum dots. Nano Lett 7(6):1711–1716

    Google Scholar 

  116. Ballou B, Ernst LA, Andreko S, Harper T, Fitzpatrick JAJ, Waggoner AS et al (2007) Sentinel lymph node imaging using quantum dots in mouse tumor models. Bioconjugate Chem 18(2):389–396

    Google Scholar 

  117. Larson DR, Zipfel WR, Williams RM, Clark SW, Bruchez MP, Wise FW et al (2003) Water-soluble quantum dots for multiphoton fluorescence imaging in vivo. Science 300(5624):1434–1436

    Google Scholar 

  118. Smith JD, Fisher GW, Waggoner AS, Campbell PG (2007) The use of quantum dots for analysis of chick CAM vasculature. Microvasc Res 73(2):75–83

    Google Scholar 

  119. Stroh M, Zimmer JP, Duda DG, Levchenko TS, Cohen KS, Brown EB et al (2005) Quantum dots spectrally distinguish multiple species within the tumor milieu in vivo. Nat Med 11(6):678–682

    Google Scholar 

  120. Levene MJ, Dombeck DA, Kasischke KA, Molloy RP, Webb WW (2004) In vivo multiphoton microscopy of deep brain tissue. J Neurophysiol 91(4):1908–1912

    Google Scholar 

  121. Morgan NY, English S, Chen W, Chernomordik V, Russo A, Smith PD et al (2005) Real time in vivo non-invasive optical imaging using near-infrared fluorescent quantum dots. Acad Radiol 12(3):313–323

    Google Scholar 

  122. Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ et al (2005) Peptide-coated semiconductor nanocrystals for biomedical applications. Genet Eng Opt Probes Biomed Appl III 5704:57–68

    Google Scholar 

  123. Rajotte D, Ruoslahti E (1999) Membrane dipeptidase is the receptor for a lung-targeting peptide identified by in vivo phage display. J Biol Chem 274(17):11593–11598

    Google Scholar 

  124. Rajotte D, Arap W, Hagedorn M, Koivunen E, Pasqualini R, Ruoslahti E (1998) Molecular heterogeneity of the vascular endothelium revealed by in vivo phage display. J Clin Invest 102(2):430–437

    Google Scholar 

  125. Porkka K, Laakkonen P, Hoffman JA, Bernasconi M, Ruoslahti E (2002) A fragment of the HMGN2 protein homes to the nuclei of tumor cells and tumor endothelial cells in vivo. Proc Natl Acad Sci USA 99(11):7444–7449

    Google Scholar 

  126. Laakkonen P, Porkka K, Hoffman JA, Ruoslahti E (2002) A tumor-homing peptide with a targeting specificity related to lymphatic vessels. Nat Med 8(7):751–755

    Google Scholar 

  127. Cai WB, Shin DW, Chen K, Gheysens O, Cao QZ, Wang SX et al (2006) Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects. Nano Lett 6(4):669–676

    Google Scholar 

  128. Cai W, Chen X (2006) Anti-angiogenic cancer therapy based on integrin alphavbeta3 antagonism. Anti-Cancer Agents Med Chem 6(5):407–428

    Google Scholar 

  129. Cai WB, Rao JH, Gambhir SS, Chen XY (2006) How molecular imaging is speeding up antiangiogenic drug development. Mol Cancer Ther 5(11):2624–2633

    Google Scholar 

  130. Cai WB, Chen K, Mohamedali KA, Cao QZ, Gambhir SS, Rosenblum MG et al (2006) PET of vascular endothelial growth factor receptor expression. J Nucl Med 47(12):2048–2056

    Google Scholar 

  131. Cai WB, Chen XY (2007) Multimodality imaging of vascular endothelial growth factor and vascular endothelial growth factor receptor expression. Front Biosci 12:4267–4279

    Google Scholar 

  132. Ferrara N (2004) Vascular endothelial growth factor: basic science and clinical progress. Endocr Rev 25(4):581–611

    Google Scholar 

  133. Levenson RM (2004) Spectral imaging and pathology: seeing more. Lab Med 35(4):244–252

    Google Scholar 

  134. Mansfield JR, Gossage KW, Hoyt CC, Levenson RM (2005) Autofluorescence removal, multiplexing, and automated analysis methods for in-vivo fluorescence imaging. J Biomed Opt 10(4):41207

    Google Scholar 

  135. Yu XF, Chen LD, Li KY, Li Y, Xiao S, Luo X et al (2007) Immunofluorescence detection with quantum dot bioconjugates for hepatoma in vivo. J Biomed Opt 12(1):014008

    Google Scholar 

  136. Tada H, Higuchi H, Wanatabe TM, Ohuchi N (2007) In vivo real-time tracking of single quantum dots conjugated with monoclonal anti-HER2 antibody in tumors of mice. Cancer Res 67(3):1138–1144

    Google Scholar 

  137. Chen HY, Li L, Cui SS, Mahounga D, Zhang J, Gu YQ (2011) Folate conjugated CdHgTe quantum dots with high targeting affinity and sensitivity for in vivo early tumor diagnosis. J Fluoresc 21(2):793–801

    Google Scholar 

  138. Xue B, Deng DW, Cao J, Liu F, Li X, Akers W et al (2012) Synthesis of NAC capped near infrared-emitting CdTeS alloyed quantum dots and application for in vivo early tumor imaging. Dalton Trans 41(16):4935–4947

    Google Scholar 

  139. Hong GS, Robinson JT, Zhang YJ, Diao S, Antaris AL, Wang QB et al (2012) In vivo fluorescence imaging with Ag2S quantum dots in the second near-infrared region. Angew Chem Int Ed 51(39):9818–9821

    Google Scholar 

  140. Nicholson C (2005) Factors governing diffusing molecular signals in brain extracellular space. J Neural Transm 112(1):29–44

    Google Scholar 

  141. Nicholson C, Chen KC, Hrabetova S, Tao L (2000) Diffusion of molecules in brain extracellular space: theory and experiment. Prog Brain Res 125:129–154

    Google Scholar 

  142. Thorne RG, Nicholson C (2006) In vivo diffusion analysis with quantum dots and dextrans predicts the width of brain extracellular space. Proc Natl Acad Sci USA 103(14):5567–5572

    Google Scholar 

  143. Santra S, Yang H, Stanley JT, Holloway PH, Moudgil BM, Walter G et al (2005) Rapid and effective labeling of brain tissue using TAT-conjugated CdS: Mn/ZnS quantum dots. Chem Commun 25:3144–3146

    Google Scholar 

  144. Muhammad O, Popescu A, Toms SA (2007) Macrophage-mediated colocalization of quantum dots in experimental glioma. Methods Mol Biol 374:161–171

    Google Scholar 

  145. Louie AY (2010) Multimodality imaging probes: design and challenges. Chem Rev 110(5):3146–3195

    Google Scholar 

  146. Yu JH et al (2013) High-resolution three-photon biomedical imaging using doped ZnS nanocrystals. Nat Mater 12:359–366

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiangbin Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Li, C., Dong, B., Wang, Q. (2014). Properties of Quantum Dots: A New Nanoprobe for Bioimaging. In: Bhushan, B., Luo, D., Schricker, S., Sigmund, W., Zauscher, S. (eds) Handbook of Nanomaterials Properties. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31107-9_48

Download citation

Publish with us

Policies and ethics