Skip to main content

Nanostructured Multiphase Polymer Networks

  • Chapter
  • First Online:
  • 7027 Accesses

Abstract

One of the most commonly used approaches to obtain polymeric materials with micro- and nanoscale features is the use of polymer blends. The first patent for a polymer blend was filed in 1846 and consisted of a mixture of natural rubber with gutta-percha (T. Hancock, English Patent, No. 11,147). Since then, the increasing demand for improved mechanical and optical properties, as well as the need to control polymerization shrinkage and stress in the plastics industry, has led to tremendous developments in terms of multicomponent polymeric materials [18, 43, 59, 69]. At a molecular level, thermoplastic polymer blends can form homogeneous or heterogeneous structures, in which case nano- or micro-sized domains can be formed. The formation of homogeneous and heterogeneous mixtures, as well as the size of the domains in heterogeneous structures, can be controlled through modifications in the composition or in the processing temperature. Of particular interest are the multiphase systems, where there is a potential for polymeric network structure-related reinforcement to occur. For example, for polystyrene and polybutadiene blends, the polybutadiene phase acts as a toughening agent, decreasing the brittleness of polystyrene [83]. One of the biggest challenges with such blends is determining their miscibility and controlling nano- and micro-phase formation through processing to achieve useful products [1, 24, 25, 70]. There are other, more sophisticated mechanisms of multicomponent system formation including thermosetting materials. Block copolymers can be added to a blend to act as compatibilizers and improve the interaction between incompatible phases [75]. Block copolymers can also be designed to self-assemble upon polymerization of a secondary monomer matrix, forming micelles [52] or other structures [68]. Another approach to achieve heterogeneity is to sequentially or simultaneously polymerize a mixture of monomers, which can be initially miscible or immiscible, polymerizable through a similar or dissimilar mechanism (e.g., radical and cationic) [8, 14, 42]. The inclusion of an inert [74] or functionalized prepolymer phase [50] to a secondary monomer matrix has also been used, with favorable shrinkage and stress outcomes [50]. These heterogeneity formation strategies may give rise to either the copolymerizations or the formation of interpenetrating polymer networks (IPNs), as will be discussed later.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   629.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   799.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Abolhasani MM, Guo Q et al (2013) Poly(vinylidene fluoride)-acrylic rubber partially miscible blends: phase behavior and its effects on the mechanical properties. J Appl Polym Sci 130:1247

    Article  Google Scholar 

  2. Anusavice KJ, Shen C et al (2013) Phillip’s science of dental materials. Elsevier, St. Louis

    Google Scholar 

  3. Boots HMJ, Kloosterboer JG et al (1996) Polymerization-induced phase separation. 1. Conversion-phase diagrams. Macromolecules 29(24):7683–7689

    Article  Google Scholar 

  4. Chen F, Cook WD (2008) Curing kinetics and morphology of IPNs from a flexible dimethacrylate and a rigid epoxy via sequential photo and thermal polymerization. Eur Polym J 44(6):1796–1813

    Article  Google Scholar 

  5. Chou YC, Lee LJ (1994) Reaction-induced phase separation during the formation of a polyurethane-unsaturated polyester interpenetrating polymer network. Polym Eng Sci 34(16):1239–1249

    Article  Google Scholar 

  6. Cook WD (1993) Photopolymerization kinetics of oligo (ethylene oxide) and oligo (methylene) oxide dimethacrylates. J Poly Sci Part A Poly Chem 31(4):1053–1067

    Article  Google Scholar 

  7. Cook WD, Chen F et al (2010) Photo-plasticity in thiol-ene network polymers – a review. Macromol Symp 291–292(1):50–65

    Google Scholar 

  8. Cook WD, Chen F et al (2006) Effect of curing order on the curing kinetics and morphology of bisGMA/DGEBA interpenetrating polymer networks. Poly Int 55(9):1027–1039

    Article  Google Scholar 

  9. Daronch M, Rueggeberg FA et al (2005) Monomer conversion of pre-heated composite. J Dent Res 84(7):663–667

    Article  Google Scholar 

  10. Daronch M, Rueggeberg FA et al (2006) Polymerization kinetics of pre-heated composite. J Dent Res 85(1):38–43

    Article  Google Scholar 

  11. de Leon RD, Morales G et al (2010) Phenomenon of phase inversion in high impact polystyrene: physico-chemical, rheological and morphological study in the presence of chain transfer agent and using different tapered block copolymers as the precursor rubber. Poly Eng Sci 50(2):373–383

    Article  Google Scholar 

  12. Dean K, Cook WD (2002) Effect of curing sequence on the photopolymerization and thermal curing kinetics of dimethacrylate/epoxy interpenetrating polymer networks. Macromolecules 35(21):7942–7954

    Article  Google Scholar 

  13. Dean K, Cook WD et al (2001) Near-infrared and rheological investigations of epoxy-vinyl ester interpenetrating polymer networks. Macromolecules 34(19):6623–6630

    Article  Google Scholar 

  14. Dean KM, Cook WD et al (2006) Small angle neutron scattering and dynamic mechanical thermal analysis of dimethacrylate/epoxy IPNs. Eur Polym J 42(10):2872–2887

    Article  Google Scholar 

  15. Derrough SN, Rouf C et al (1993) Investigations for obtaining semiinterpenetrating polymer networks based on monomers of different reactivity toward radicals. J Appl Polym Sci 48(7):1183–1188

    Article  Google Scholar 

  16. Dill KA, Bromberg S (2003) Molecular driving forces. Statistical thermodynamics in chemistry and biology. Garland Science, New York

    Google Scholar 

  17. Doane JW, Vaz NA et al (1986) Field controlled light scattering from nematic microdroplets. Appl Phys Lett 48(4):269–271

    Article  Google Scholar 

  18. Dou R, Wang W et al (2013) Effect of core-shell morphology evolution on the rheology, crystallization, and mechanical properties of PA6/EPDM-g-MA/HDPE ternary blend. J Appl Polym Sci 129(1):253–262

    Article  Google Scholar 

  19. Erdogan T, Bernaerts KV et al (2005) Preparation of star block co-polymers by combination of cationic ring opening polymerization and atom transfer radical polymerization. Des Monomers Poly 8(6):705–714

    Article  Google Scholar 

  20. Erdogan T, Hizal G et al (2006) A new strategy for the preparation of multiarm star-shaped polystyrene via a combination of atom transfer radical polymerization and cationic ring-opening polymerization. Des Monomers Poly 9(4):393–401

    Article  Google Scholar 

  21. Flory PJ (1941) Thermodynamics of high polymer solutions. J Chem Phys 9(8):660–661

    Article  Google Scholar 

  22. Flory PJ (1944) Thermodynamics of heterogeneous polymer solutions. J Chem Phys 12(3):114–115

    Article  Google Scholar 

  23. Flory PJ (1953) Principles of polymer chemistry. Cornell University Press, Ithaca

    Google Scholar 

  24. Frederix C, Beauchene P et al (2013) Kinetics of the non-isothermal fusion-welding of unlike ethylene copolymers over a wide crystallinity range. Polymer (UK) 54(11):2755–2763

    Article  Google Scholar 

  25. Hashemi Doulabi A, Mirzadeh H et al (2013) Interaction and miscibility study of fumarate-based macromers with chitosan. Mater Chem Phys 139(2–3):515–524

    Article  Google Scholar 

  26. Hashimoto T, Takebe T et al (1986) Apparatus to measure small-angle light scattering profiles of polymers under shear flow. Poly J 18(2):123–130

    Article  Google Scholar 

  27. Hizal G, Sakar D et al (2005) Synthesis of tri-arm star di-block co-polymer containing poly(tetrahydrofuran-b-methyl methacrylate) arms via combination of cationic ring-opening polymerization and photosensitized free radical polymerization routes. Des Monomers Poly 8(6):609–617

    Article  Google Scholar 

  28. Howard B, Wilson ND et al (2010) Relationships between conversion, temperature and optical properties during composite photopolymerization. Acta Biomater 6(6):2053–2059

    Article  Google Scholar 

  29. Kammer HW, Inoue T et al (1989) Upper and lower critical solution temperature behaviour in polymer blends and its thermodynamic interpretation. Polymer 30(5):888–892

    Article  Google Scholar 

  30. Karger-Kocsis J (2005) Simultaneous interpenetrating network structured vinylester/epoxy hybrids and their use in composites. In: Harrats C, Thomas S, Groeninckx G (eds) Micro- and nanostructured multiphase polymer blend systems. Taylor and Francis, Boca Raton, pp 273–293

    Chapter  Google Scholar 

  31. Khoun L, Chaudhuri RI et al (2011) Effect of low-profile additives on thermo-mechanical properties of glass fiber-reinforced unsaturated polyester composites. J Reinf Plast Compos 30(9):815–823

    Article  Google Scholar 

  32. Khoun L, Palardy G et al (2011) Relation between volumetric changes of unsaturated polyester resin and surface finish quality of fiberglass/unsaturated polyester composite panels. Polym Compos 32(9):1473–1480

    Article  Google Scholar 

  33. Kloosterboer JG, Serbutoviez C et al (1996) Monitoring of polymerization-induced phase separation by simultaneous photo-d.s.c./turbidity measurements. Polymer 37(26):5937–5942

    Article  Google Scholar 

  34. Koo CM, Wu L et al (2005) Microstructure and mechanical properties of semicrystalline-rubbery-semicrystalline triblock copolymers. Macromolecules 38(14):6090–6098

    Article  Google Scholar 

  35. Lee TAIY, Cramer NB et al (2009) (Meth) Acrylate Vinyl Ester Hybrid Polymerizations. J Poly Sci Part A Poly Chem 47(10):2509–2517

    Article  Google Scholar 

  36. Li W, Cao H et al (2008) Control of the microstructure of polymer network and effects of the microstructures on light scattering properties of UV-cured polymer-dispersed liquid crystal films. J Polym Sci B 46(19):2090–2099

    Article  Google Scholar 

  37. Li W, Lee LJ (2000) Low temperature cure of unsaturated polyester resins with thermoplastic additives. II. Structure formation and shrinkage control mechanism. Polymer 41(2):697–710

    Article  Google Scholar 

  38. Li W, Lee LJ (2000) Low temperature cure of unsaturated polyester resins with thermoplastic additives: I. Dilatometry and morphology study. Polymer 41(2):685–696

    Article  Google Scholar 

  39. Li W, Lee LJ et al (2000) Low temperature cure of unsaturated polyester resins with thermoplastic additives III. Modification of polyvinyl acetate for better shrinkage control. Polymer 41(2):711–717

    Article  Google Scholar 

  40. Li W, Sheller N et al (2000) Morphology and ordering behavior of a poly(styrene)-b-poly(ferrocenyldimethylsilane) diblock copolymer. Polymer 41(2):719–724

    Article  Google Scholar 

  41. Lin Y, Stansbury JW (2003) Kinetics studies of hybrid structure formation by controlled photopolymerization. Polymer 44(17):4781–4789

    Article  Google Scholar 

  42. Lin Y, Stansbury JW (2005) The impact of water on photopolymerization kinetics of methacrylate/vinyl ether hybrid systems. Poly Adv Technol 16(2–3):195–199

    Article  Google Scholar 

  43. Lin Y, Tan Y et al (2013) Casting solvent effects on molecular dynamics of weak dynamic asymmetry polymer blend films via broadband dielectric spectroscopy. J Membr Sci 439:20–27

    Article  Google Scholar 

  44. Lipatov YS (2007) Interfacial regions in the phase-separated interpenetrating networks. Polym Bull 58(1):105–118

    Article  Google Scholar 

  45. Liu X, Deng J et al (2012) Amphiphilic triblock terpolymers consisting of poly(n-hexyl isocyanate) and poly(ethylene glycol): preparation and characterization. Polymer (UK) 53(25):5717–5722

    Article  Google Scholar 

  46. Lynd NA, Meuler AJ et al (2008) Polydispersity and block copolymer self-assembly. Prog PolymSci (Oxf) 33(9):875–893

    Article  Google Scholar 

  47. Martinelli E, Agostini S et al (2008) Nanostructured films of amphiphilic fluorinated block copolymers for fouling release application. Langmuir 24(22):13138–13147

    Article  Google Scholar 

  48. Matsumoto A (1995) Free-radical crosslinking polymerization and copolymerization of multivinyl compounds. Adv Polym Sci 123:41–80

    Article  Google Scholar 

  49. McCormick CL, Lowe AB (2004) Aqueous RAFT polymerization: recent developments in synthesis of functional water-soluble (Co)polymers with controlled structures. Acc Chem Res 37(5):312–325

    Article  Google Scholar 

  50. Moraes RR, Garcia JW et al (2011) Control of polymerization shrinkage and stress in nanogel-modified monomer and composite materials. Dent Mater 27(6):509–519

    Article  Google Scholar 

  51. Morães RR, Garcia JW et al (2012) Improved dental adhesive formulations based on reactive nanogel additives. J Dent Res 91(2):179–184

    Article  Google Scholar 

  52. Nguyen PT, Wiesenauer EF et al (2013) Effect of composition and nanostructure on CO2/N2 transport properties of supported alkyl-imidazolium block copolymer membranes. J Membr Sci 430:312–320

    Article  Google Scholar 

  53. Nishi T, Wang TT et al (1975) Thermally induced phase separation behavior of compatible polymer mixtures. Macromolecules 8(2):227–234

    Article  Google Scholar 

  54. Odian G (2004) Principles of polymerization. Wiley, Hoboken

    Book  Google Scholar 

  55. Okay O, Yilmaz Y et al (1999) Heterogeneities during the formation of poly(sodium acrylate) hydrogels. Polym Bull 43(4–5):425–431

    Article  Google Scholar 

  56. Owusu-Adom K, Guymon CA (2008) Photopolymerization kinetics of poly(acrylate)-clay composites using polymerizable surfactants. Polymer 49(11):2636–2643

    Article  Google Scholar 

  57. Patel MP, Braden M et al (1987) Polymerization shrinkage of methacrylate esters. Biomaterials 8(1):53–56

    Article  Google Scholar 

  58. Pfeifer CS, Szczepanski CR et al (2011) Heterogeneous methacrylate networks: reaction kinetics, compositional drift and network formation. Dent Mater 27(S1):e43

    Article  Google Scholar 

  59. Privas E, Leroux F et al (2013) Preparation and properties of blends composed of lignosulfonated layered double hydroxide/plasticized starch and thermoplastics. Carbohydr Polym 96(1):91–100

    Article  Google Scholar 

  60. Serbutoviez C, Kloosterboer JG et al (1997) Polymerization-induced phase separation III. Morphologies and contrast ratios of polymer dispersed liquid crystals. Liq Cryst 22(2):145–156

    Article  Google Scholar 

  61. Serbutoviez C, Kloosterboer JG et al (1996) Polymerization-induced phase separation. 2. Morphology of polymer-dispersed liquid crystal thin films. Macromolecules 29(24):7690–7698

    Article  Google Scholar 

  62. Siddaramaiah, Barcia FL et al (2007) Rheological, mechanical, and morphological studies of epoxy/poly(methyl methacrylate) semi-interpenetrating polymer networks. J Appl Polym Sci 106(6):3808–3815

    Article  Google Scholar 

  63. Siggia ED (1979) Late stages of spinodal decomposition in binary mixtures. Phys Rev A 20(2):595–605

    Article  Google Scholar 

  64. Sonnenschein MF, Wendt BL (2013) Design and formulation of soybean oil derived flexible polyurethane foams and their underlying polymer structure/property relationships. Polymer (UK) 54(10):2511–2520

    Article  Google Scholar 

  65. Soulé ER, Borrajo J et al (2005) Kinetics of the free-radical polymerization of isobornyl methacrylate in the presence of polyisobutylenes of different molar masses. Macromolecules 38(14):5987–5994

    Article  Google Scholar 

  66. Stansbury JW, Trujillo-Lemon M et al (2005) Conversion-dependent shrinkage stress and strain in dental resins and composites. Dent Mater 21(1):56–67

    Article  Google Scholar 

  67. Szczepanski CR, Pfeifer CS et al (2012) A new approach to network heterogeneity: polymerization induced phase separation in photo-initiated, free-radical methacrylic systems. Polymer (UK) 53(21):4694–4701

    Article  Google Scholar 

  68. Tang C, Lennon EM et al (2008) Evolution of block copolymer lithography to highly ordered square arrays. Science 322(5900):429–432

    Article  Google Scholar 

  69. Tian W, Kong J et al (2013) Temperature-responsive property of star poly((N, N-dimethylamino)ethyl methacrylate) with hyperbranched core: effect of core-shell architecture and β-cyclodextrin grafted via covalent bond or ionic electrostatic attraction. Soft Mater 11(3):272–280

    Article  Google Scholar 

  70. Ulum S, Holmes N et al. (2013) The role of miscibility in polymer: fullerene nanoparticulate organic photovoltaic devices. Nano Energy

    Google Scholar 

  71. Utracki LA (1989) Polymer alloys and blends: thermodynamics and rheology. Hanser, New York

    Google Scholar 

  72. Vaessen DM, McCormick AV et al (2002) Effects of phase separation on stress development in polymeric coatings. Polymer 43(8):2267–2277

    Article  Google Scholar 

  73. Velázquez R, Ceja I et al (2004) Morphology–composition–processing relationships in poly(methyl methacrylate)–polytriethylene glycol dimethacrylate shrinkage-controlled blends. J Appl Polym Sci 91(2):1254–1260

    Article  Google Scholar 

  74. Velázquez R, Sánchez F et al (2000) Synthesis of shrinkage-controlled acrylic copolymers. J Appl Polym Sci 78(3):586–591

    Article  Google Scholar 

  75. Vilay V, Mariatti M et al (2011) Effect of PEO-PPO-PEO copolymer on the mechanical and thermal properties and morphological behavior of biodegradable poly (L-lactic acid) (PLLA) and poly (butylene succinate-co-L-lactate) (PBSL) blends. Polym Adv Technol 22(12):1786–1793

    Article  Google Scholar 

  76. Vonka M, Kosek J (2012) Modelling the morphology evolution of polymer materials undergoing phase separation. Chem Eng J 207–208:895–905

    Article  Google Scholar 

  77. Williams RJJ, Rozenberg BA et al (1997) Reaction-induced phase separation in modified thermosetting polymers. Adv Polym Sci 128:95–156

    Article  Google Scholar 

  78. Yamagishi FG, Miller LJ et al. (1986) Morphological control in polymer-dispersed liquid crystal film matrices. Proc SPIE 1080 Liq Cryst Chem Phys Appl 1080(24)

    Google Scholar 

  79. Yamanaka K, Takagi Y et al (1989) Reaction-induced phase separation in rubber-modified epoxy resins. Polymer 30(10):1839–1844

    Article  Google Scholar 

  80. Yang Q, Chung TS et al (2009) Rheological investigations of linear and hyperbranched polyethersulfone towards their as-spun phase inversion membranes’ differences. Polymer 50(2):524–533

    Article  Google Scholar 

  81. Zhang H, Yang S et al (2012) Preparation of PNHMPA/PEG interpenetrating polymer networks gel and its application for phase change fibers. J Appl Polym Sci 129:1563

    Article  Google Scholar 

  82. Zhang W, Zhang J et al (2012) Effect of core-shell structured modifier ACR on ASA/SAN/ACR ternary blends. J Mater Sci 47(12):5041–5049

    Article  Google Scholar 

  83. Zhu LD, Yang HY et al (2013) Submicrometer-sized rubber particles as “craze-bridge” for toughening polystyrene/high-impact polystyrene. J Appl Polym Sci 129(1):224–229

    Article  Google Scholar 

  84. Zhu YC, Wang B et al (2006) Investigation of the hydrogen-bonding structure and miscibility for PU/EP IPN nanocomposites by PALS. Macromolecules 39(26):9441–9445

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmem S. Pfeifer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pfeifer, C.S. (2014). Nanostructured Multiphase Polymer Networks. In: Bhushan, B., Luo, D., Schricker, S., Sigmund, W., Zauscher, S. (eds) Handbook of Nanomaterials Properties. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31107-9_47

Download citation

Publish with us

Policies and ethics