Skip to main content

Metal Structures as Advanced Materials in Nanotechnology

  • Chapter
  • First Online:

Abstract

‘Metal structures as advanced materials in nanotechnology’ is a collection of fabrication and characterization techniques which involve metallic materials for the realization of advanced micro- and nanostructured devices.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   629.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   799.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. De Angelis F, Patrini M, Das G, Maksymov I, Galli M, Businaro L, Andreani LC, Di Fabrizio E (2008) A hybrid plasmonic-photonic nanodevice for label-free detection of a few molecules. Nano Lett 8:2321–2327

    Google Scholar 

  2. Zhang W, Cui X, Martin OJF (2009) Local field enhancement of an infinite conical metal tip illuminated by a focused beam. J Raman Spectrosc 40:1338–1342

    Google Scholar 

  3. De Angelis F, Das G, Candeloro P, Patrini M, Galli M, Bek A, Lazzarino M, Maksymov I, Liberale C, Andreani LC, Di Fabrizio E (2010) Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons. Nat Nanotechnol 5:67–72

    Google Scholar 

  4. Babadjanyan AJ, Margaryan NL, Nerkararyan Kh V (2000) Superfocusing of surface polaritons in the conical structure. J Appl Phys 87:3785–3788

    Google Scholar 

  5. Vaccaro L, Aeschimann L, Staufer U, Herzig HP, Dandliker R (2003) Propagation of the electromagnetic field in fully coated near-field optical probes. Appl Phys Lett 83:584–586

    Google Scholar 

  6. Ding W, Andrews SR, Maier SA (2007) Internal excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip. Phys Rev A 75:063822

    Google Scholar 

  7. Neacsu CC, Bergewer S, Olmon RL, Saraf LV, Ropers C, Raschke MB (2010) Near-field localization in plasmonic superfocusing: a nanoemitter on a tip. Nano Lett 10:592–596; Gramotnev DK, Vogel MW, Stockman MI (2008) Optimized nonadiabatic nanofocusing of plasmons by tapered metal rods. J Appl Phys 104:034311

    Google Scholar 

  8. Lee JS, Han S, Shirdel J, Koo S, Sadiq D, Lienau C, Park N (2011) Superfocusing of electric or magnetic fields using conical metal tips: effect of mode symmetry on the plasmon excitation method. Opt Express 19:12342–12347

    Google Scholar 

  9. Proietti Zaccaria R, Alabastri A, De Angelis F, Das G, Liberale C, Toma A, Giugni A, Razzari L, Malerba M, Sun HB, Di Fabrizio E (2012) Fully analytical description of adiabatic compression in dissipative polaritonic structures. Phys Rev B 86:035410

    Google Scholar 

  10. Proietti Zaccaria R, De Angelis F, Toma A, Razzari L, Alabastri A, Das G, Liberale C, Di Fabrizio E (2012) Surface plasmon polariton compression through radially and linearly polarized source. Opt Lett 37:545–547

    Google Scholar 

  11. Corio P, Brown SDM, Marucci A, Pimenta MA, Kneipp K, Dresselhaus G, Dresselhaus MS (2000) Surface-enhanced resonant Raman spectroscopy of single-wall carbon nanotubes adsorbed on silver and gold surfaces. Phys Rev B 61:13202–13211

    Google Scholar 

  12. Davis TJ, Gomez DE, Vernon KC (2010) Evanescent coupling between a Raman-active molecule and surface plasmons in ensembles of metallic nanoparticles. Phys Rev B 82:205434

    Google Scholar 

  13. Fazio B, D’Andrea C, Bonaccorso F, Irrera A, Calogero G, Vasi C, Gucciardi PG, Allegrini M, Toma A, Chiappe D, Martella C, Buatier de Mongeot F (2011) Re-radiation enhancement in polarized surface-enhanced resonant raman scattering of randomly oriented molecules on self-organized gold nanowires. ACS Nano 5:5945–5956

    Google Scholar 

  14. Chou SY, Ding W (2013) Ultrathin, high-efficiency, broad-band, omniacceptance, organic solar cells enhanced by plasmonic cavity with subwavelength hole array. Opt Express 21:A60–A76

    Google Scholar 

  15. Ojea-Jime’nez I, Lo’pez X, Arbiol J, Puntes V (2012) Citrate-coated gold nanoparticles as smart scavengers for mercury(II) removal from polluted waters. ACS Nano 6:2253–2260

    Google Scholar 

  16. Harris C, Kamat PV (2010) Photocatalytic events of CdSe quantum dots in confined media. Electrodic behavior of coupled platinum nanoparticles. ACS Nano 4:7321–7330

    Google Scholar 

  17. Persano A, De Giorgi M, Fiore A, Cingolani R, Manna L, Cola A, Krahne R (2010) Photoconduction properties in aligned assemblies of colloidal CdSe/CdS nanorods. ACS Nano 4:1646

    Google Scholar 

  18. Vasilantonakis N, Terzaki K, Sakellari I, Purlys V, Gray D, Soukoulis CM, Vamvakaki M, Kafesaki M, Farsar M (2012) Three-dimensional metallic photonic crystals with optical bandgaps. Adv Mater 24:1101

    Google Scholar 

  19. Christ A, Zentgraf T, Kuhl J, Tikhodeev SG, Gippius NA, Giessen H (2004) Optical properties of planar metallic photonic crystal structures: experiment and theory. Phys Rev B 70:125113

    Google Scholar 

  20. Neubrech F, Weber D, Katzmann J, Huck C, Toma A, Di Fabrizio E, Pucci A, Härtling T (2012) Infrared optical properties of nanoantenna dimers with photochemically narrowed gaps in the 5 nm regime. ACS Nano 6:7326

    Google Scholar 

  21. Razzari L, Toma A, Shalaby M, Clerici M, Proietti Zaccaria R, Liberale C, Marras S, Al-Naib IAI, Das G, De Angelis F, Peccianti M, Falqui A, Ozaki T, Morandotti R, Di Fabrizio E (2011) Extremely large extinction efficiency and field enhancement in terahertz resonant dipole nanoantennas. Opt Express 19:26088

    Google Scholar 

  22. Eigler D (1990) A new role for the STM. Science 250:1340–1341

    Google Scholar 

  23. Mock JJ, Barbic M, Smith DR, Schultz DA, Schultz S (2002) Shape effects in plasmon resonance of individual colloidal silver nanoparticles. J Chem Phy 116:6755–6759

    Google Scholar 

  24. Dasary SSR, Singh AK, Senapati D, Yu H, Ray PC (2009) Gold nanoparticle based label-free SERS probe for ultrasensitive and selective detection of trinitrotoluene. J Am Chem Soc 131:13806–13812

    Google Scholar 

  25. Alvarez-Puebla RA, Zubarev ER, Kotov NA, Liz-Marzan LM (2012) Self-assembled nanorod supercrystals for ultrasensitive SERS diagnostics. Nano Today 7:6–9

    Google Scholar 

  26. Sans V, Moskalenko A, Wilson K, Kozhevin V, Yavsin D, Kuzmin I, Gurevich S, Lapkin A (2011) SE(R)RS devices fabricated by a laser electrodispersion method. Analyst 136:3295–3302

    Google Scholar 

  27. Toma A, Chiappe D, Boragno C, Buatier de Mongeot F (2010) Self-organized ion-beam synthesis of nanowires with broadband plasmonic functionality. Phys Rev B 81:165436

    Google Scholar 

  28. Belardini A, Larciprete MC, Centini M, Fazio E, Sibilia C, Chiappe D, Martella C, Toma A, Giordano M, Buatier de Mongeot F (2011) Circular dichroism in the optical second-harmonic emission of curved gold metal nanowires. Phys Rev Lett 107:257401

    Google Scholar 

  29. Fazio B, D’Andrea C, Bonaccorso F, Irrera A, Calogero G, Vasi C, Gucciardi PG, Allegrini M, Toma A, Chiappe D, Martella C, Buatier de Mongeot F (2011) Re-radiation enhancement in polarized surface-enhanced resonant Raman scattering of randomly oriented molecules on self-organized gold nanowires. ACS Nano 5:5945

    Google Scholar 

  30. Chung AJ, Huh YS, Erickson D (2011) Large area flexible SERS active substrates using engineered nanostructures. Nanoscale 3:2903–2908

    Google Scholar 

  31. Kumar A, Hwang JH, Kumar S, Nam JM (2013) Tuning and assembling metal nanostructures with DNA. Chem Commun 49:2597–2609

    Google Scholar 

  32. Qiu T, Chu PK (2008) Self-selective electroless plating: an approach for fabrication of functional 1D nanomaterials. Mater Sci Eng R 61:59–77

    Google Scholar 

  33. Gao J, Tang F, Ren J (2005) Electroless nickel deposition on amino-functionalized silica spheres. Surf Coat Technol 200:2249–2252

    Google Scholar 

  34. Goia D, Matijevic E (1998) Preparation of monodispersed metal particles. New J Chem 22:1203–1215

    Google Scholar 

  35. Peng K, Zhu J (2004) Morphological selection of electroless metal deposits on silicon in aqueous fluoride solution. Electrochim Acta 49:2563–2568

    Google Scholar 

  36. Yang Y, Shi J, Kawamura G et al (2008) Preparation of Au-Ag, Ag-Au core-shell bimetallic nanoparticles for surface-enhanced Raman scattering. Scr Mater 58:862–865

    Google Scholar 

  37. Ye W, Chengmin S, Jifa T et al (2008) Self-assembled synthesis of SERS-active silver dendrites and photoluminescence properties of a thin porous silicon layer. Electrochem Commun 10:625–629

    Google Scholar 

  38. Palermo V, Jones D (2001) Morphological changes of the Si [100] surface after treatment with concentrated and diluted HF. Mater Sci Semicon Proc 4:437–441

    Google Scholar 

  39. Yae S, Nasu N, Matsumoto K et al (2007) Nucleation behavior in electroless displacement deposition of metals on silicon from hydrofluoric acid solutions. Electrochim Acta 53:35–41

    Google Scholar 

  40. Ye W, Chang Y, Ma C et al (2007) Electrochemical investigation of the surface energy: effect of the HF concentration on electroless silver deposition onto p-Si (111). Appl Surf Sci 253:3419–3424

    Google Scholar 

  41. Luk’yanchuk B, Zheludev NI, Maier SA et al (2010) The Fano resonance in plasmonic nanostructures and metamaterials. Nat Mater 9:707–715

    Google Scholar 

  42. Tao AR, Habas S, Yang P (2008) Shape control of colloidal metal nanocrystals. Small 4:310–325

    Google Scholar 

  43. Le Ru E, Etchegoin PG, Grand J et al (2008) Surface enhanced Raman spectroscopy on nanolithography-prepared substrates. Curr Appl Phys 8:467–470

    Google Scholar 

  44. Coluccio ML, Das G, Mecarini F et al (2009) Silver-based surface enhanced Raman scattering (SERS) substrate fabrication using nanolithography and site selective electroless deposition. Microelectron Eng 86:1085–1088

    Google Scholar 

  45. Das G, Mecarini F, Gentile F et al (2009) Nano-patterned SERS substrate: application for protein analysis vs. temperature. Biosens Bioelectron 24:1693–1699

    Google Scholar 

  46. Zhang X, Yonzon C, Duyne R (2006) Nanosphere lithography fabricated plasmonic materials and their applications. J Mater Res 21:1083–1092

    Google Scholar 

  47. De Angelis F et al (2011) Emerging fabrication techniques for 3D nano-structuring in plasmonics and single molecule studies. Nanoscale 3:2689–2696

    Google Scholar 

  48. Ashkin A (1970) Acceleration and trapping of particles by radiation pressure. Phys Rev Lett 24:156–158

    Google Scholar 

  49. Emiliani V (2005) Wave front engineering for microscopy of living cells. Opt Express 13(5):1395–1405

    Google Scholar 

  50. Cojoc D et al (2004) Multiple optical trapping by means of diffractive optical elements. Jpn J Appl Phys 43(6B):3910–3915

    Google Scholar 

  51. Garbin V et al (2007) Changes in microbubble dynamics near a boundary revealed by combined optical micromanipulation and high-speed imaging. Appl Phys Lett 90:114103

    Google Scholar 

  52. Cojoc D et al (2007) Properties of the force exerted by filopodia and lamellipodia and the involvement of cytoskeletal components. PLoS One 2(10):e1072

    Google Scholar 

  53. Sun HB, Kawata S (2004) Two-photon photopolymerization and 3D lithographic microfabrication, in advances in polymer science: NMR, 3-D analysis, photopolymerization, vol 170. Springer, Berlin, pp 169–273

    Google Scholar 

  54. Maruo S et al (2003) Force-controllable, optically driven micromachines fabricated by single-step two-photon microstereolithography. J Microelectromech Syst 12:533–539

    Google Scholar 

  55. Liberale C et al (2010) Micro-optics fabrication on top of optical fibers using two-photon lithography. IEEE Photonics Technol Lett 22:474–476

    Google Scholar 

  56. Takada K et al (2005) Improved spatial resolution and surface roughness in photopolymerization-based laser nanowriting. Appl Phys Lett 86:071122

    Google Scholar 

  57. Fuchs R (1975) Theory of the optical properties of ionic crystal cubes. Phys Rev B 11(4):1732–1740

    Google Scholar 

  58. Chirumamilla M et al (2012) Optimization and characterization of Au cuboid nanostructures as a SERS device for sensing applications. Microelectron Eng 97:189–192

    Google Scholar 

  59. Kreibig U, Vollmer M (1995) Optical properties of metal clusters, vol 25. Springer, Berlin

    Google Scholar 

  60. Kelly KL et al (2002) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107(3):668–677

    Google Scholar 

  61. Banaee MG, Crozier KB (2010) Mixed dimer double-resonance substrates for surface-enhanced Raman spectroscopy. ACS Nano 5(1):307–314

    Google Scholar 

  62. Chu Y, Banaee MG, Crozier KB (2010) Double-resonance plasmon substrates for surface-enhanced Raman scattering with enhancement at excitation and stokes frequencies. ACS Nano 4(5):2804–2810

    Google Scholar 

  63. Gopinath A et al (2009) Deterministic aperiodic arrays of metal nanoparticles for surface-enhanced Raman scattering (SERS). Opt Express 17(5):3741–3753

    Google Scholar 

  64. Das G et al (2012) Fabrication of large-area ordered and reproducible nanostructures for SERS biosensor application. Analyst 137(8):1785–1792

    Google Scholar 

  65. Rakic AD et al (1998) Optical properties of metallic films for vertical-cavity optoelectronic devices. Appl Opt 37(22):5271–5283

    Google Scholar 

  66. Johansson P, Xu H, Käll M (2005) Surface-enhanced Raman scattering and fluorescence near metal nanoparticles. Phys Rev B 72(3):035427

    Google Scholar 

  67. Witten T, Sander L (1981) Diffusion-limited aggregation, a kinetic critical phenomenon. Phys Rev Lett 47:1400–1403

    Google Scholar 

  68. Zhang Z, Lagally M (1997) Atomistic process in the early stages of thin-film growth. Science 276:377–383

    Google Scholar 

  69. Dawkins R, Ben-Avraham D (2001) Computer simulations of diffusion-limited reactions. Comput Sci Eng 3:72–76

    Google Scholar 

  70. Gentile F, Coluccio M, Toma A et al (2012) Electroless deposition dynamics of silver nanoparticles clusters: a diffusion limited aggregation (DLA) approach. Microelectron Eng 98:359–362

    Google Scholar 

  71. Witten T, Sander L (1983) Diffusion-limited aggregation. Phys Rev B 27:5686–5697

    Google Scholar 

  72. Hill SC, Alexander JID (1997) Modified diffusion-limited aggregation simulation of electrodeposition in two dimensions. Phys Rev E 56:4317–4327

    Google Scholar 

  73. Wu H, Lattuada M, Sandkuhler P et al (2003) Role of sedimentation and buoyancy on the kinetics of diffusion limited colloidal aggregation. Langmuir 19:10710–10718

    Google Scholar 

  74. Persson M, Yasuda H, Albergel J et al (2001) Modeling plot scale dye penetration by a diffusion limited aggregation (DLA) model. J Hydrol 250:98–105

    Google Scholar 

  75. Howells AR, Hung L, Chottiner GS et al (2002) Annealing of defects in crystals. Solid State Ion 150:53–62

    Google Scholar 

  76. Qiu T, Wu X, Siu G et al (2005) Self-assembled growth and green emission of gold nano whiskers. Appl Phys Lett 87:223115

    Google Scholar 

  77. Kuhn A, Argoul F (1995) Diffusion-limited kinetics in thin-gap electroless deposition. J Electroanal Chem 397:93–104

    Google Scholar 

  78. Qiu T, Wu X, Mei Y et al (2005) Self-organized synthesis of silver dendritic nanostructures via an electroless metal deposition method. Appl Phys A 81:669–671

    Google Scholar 

  79. Liu F-M, Green M (2004) Efficient SERS substrates made by electroless silver deposition into patterned silicon structures. J Mater Chem 14:1526–1532

    Google Scholar 

  80. Saltzmann M (2001) In drug delivery, vol pp. Oxford University Press, Oxford

    Google Scholar 

  81. Decuzzi P, Gentile F, Granaldi A et al (2007) Flow chamber analysis of size effects in the adhesion of spherical particles. Int J Nanomedicine 2:689–696

    Google Scholar 

  82. Haynes WM (1998) CRC handbook of chemistry and physics. CRC Press, Boulder

    Google Scholar 

  83. Gentile F, Battista E, Accardo A et al (2011) Fractal structure can explain the increased hydrophobicity of nanoporous silicon films. Microelectron Eng 88:2537–2540

    Google Scholar 

  84. Gentile F, Rocca RL, Marinaro G et al (2012) Differential cell adhesion on mesoporous silicon substrates. ACS Appl Mater 4:2903–2911

    Google Scholar 

  85. Meakin P (1984) Diffusion controlled deposition on surfaces: cluster size distribution, interface exponents, and other properties. Phys Rev B 30:4207–4214

    Google Scholar 

  86. Racz Z, Vicsek T (1983) Diffusion controlled deposition: cluster statistics and scaling. Phys Rev Lett 51:2382–2385

    Google Scholar 

  87. Gentile F, Moretti M, Limongi T et al (2012) Direct imaging of DNA fibers: the visage of double helix. Nano Lett 12:6453–6458

    Google Scholar 

  88. Han W, Byun M, Lin Z (2011) Assembling and positioning latex nanoparticles via controlled evaporative self-assembly. J Mater Chem 21:16968

    Google Scholar 

  89. Hejazi V, Nosonovsky M (2012) Wetting transitions in two-, three-, and four-phase systems. Langmuir 28:2173–2180

    Google Scholar 

  90. Cui Y (2001) Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293:1289–1292

    Google Scholar 

  91. Accardo A, Tirinato L, Altamura D, Sibillano T, Giannini C, Riekel C, Di Fabrizio E (2013) Superhydrophobic surfaces allow probing of exosome self organization using X-ray scattering. Nanoscale 5:2295–2299

    Google Scholar 

  92. Berry SM, Pabba S, Crest J et al (2011) Characterization and modeling of direct-write fabrication of microscale polymer fibers. Polymer 52:1654–1661

    Google Scholar 

  93. De Angelis F, Gentile F, Mecarini F et al (2011) Breaking the diffusion limit with super-hydrophobic delivery of molecules to plasmonic nanofocusing SERS structures. Nat Photonics 5:682–687

    Google Scholar 

  94. Su B, Wang S, Wu Y et al (2012) Small molecular nanowire arrays assisted by superhydrophobic pillar-structured surfaces with high adhesion. Adv Mater 24:2780–2785

    Google Scholar 

  95. Accardo A, Gentile F, Mecarini F et al (2010) In situ X-ray scattering studies of protein solution droplets drying on micro- and nanopatterned superhydrophobic PMMA surfaces. Langmuir 26:15057–15064

    Google Scholar 

  96. Tucker TJ (1961) Behavior of exploding gold wires. J Appl Phys 32:1894

    Google Scholar 

  97. Willander M, Nur O, Zhao QX et al (2009) Zinc oxide nanorod based photonic devices: recent progress in growth, light emitting diodes and lasers. Nanotechnology 20:332001

    Google Scholar 

  98. Xu S, Wang ZL (2011) One-dimensional ZnO nanostructures: solution growth and functional properties. Nano Res 4:1013–1098

    Google Scholar 

  99. Atanasova P, Thomas Weitz R, Gerstel P et al (2009) DNA-templated synthesis of ZnO thin layers and nanowires. Nanotechnology 20:365302

    Google Scholar 

  100. Demming A, Brongersma M, Kim D-S (2012) Plasmonics in optoelectronic devices. Nanotechnology 23:440201

    Google Scholar 

  101. Willets KA, Van Duyne RP (2007) Localized surface plasmon resonance spectroscopy and sensing. Annu Rev Phys Chem 58:267–297

    Google Scholar 

  102. Liu N, Tang ML, Hentschel M et al (2011) Nanoantenna-enhanced gas sensing in a single tailored nanofocus. Nat Mater 10:631–636

    Google Scholar 

  103. Toma A, Das G, Chirumamilla M et al (2012) Fabrication and characterization of a nanoantenna-based Raman device for ultrasensitive spectroscopic applications. Microelectron Eng 98:424–427

    Google Scholar 

  104. De Angelis F, Proietti Zaccaria R, Francardi M et al (2011) Multi-scheme approach for efficient surface plasmon polariton generation in metallic conical tips on AFM-based cantilevers. Opt Express 19:22268–22279

    Google Scholar 

  105. Biagioni P, Huang JS, Hecht B (2012) Nanoantennas for visible and infrared radiation. Rep Prog Phys 75:024402

    Google Scholar 

  106. Huang J-S, Kern J, Geisler P et al (2010) Mode imaging and selection in strongly coupled nanoantennas. Nano Lett 10:2105–2110

    Google Scholar 

  107. Panaro S, Toma A, Proietti Zaccaria R et al (2013) Design and top-down fabrication of metallic L-shape gap nanoantennas supporting plasmon-polariton modes. Microelectron Eng. doi:10.1016/j.mee.2013.02.014

    Google Scholar 

  108. Chen K-P, Drachev VP, Borneman JD et al (2010) Drude relaxation rate in grained gold nanoantennas. Nano Lett 10:916–922

    Google Scholar 

  109. Stockman MI (2004) Nanofocusing of optical energy in tapered plasmonic waveguides. Phys Rev Lett 93(13):137404(1)–137404(4)

    Google Scholar 

  110. Tormen M, Romanato F, Altissimo M et al (2004) Three-dimensional micro- and nanostructuring by combination of nanoimprint and X-ray lithography. J Vac Sci Technol B 22(2):766–770

    Google Scholar 

  111. Romanato F, Businaro L, Vaccari L et al (2003) Fabrication of 3D metallic photonic crystals by X-ray lithography. Microelectron Eng 67:479–486

    Google Scholar 

  112. Krauss TF, DeLaRue RM, Brand S (1996) Two-dimensional photonic-bandgap structures operating at near-infrared wavelengths. Nature 383:699–702

    Google Scholar 

  113. Vlasov YA, Bo XZ, Sturm JC et al (2001) On-chip natural assembly of silicon photonic bandgap crystals. Nature 414:289–293

    Google Scholar 

  114. Noda S, Fujita M, Asano T (2007) Spontaneous-emission control by photonic crystals and nanocavities. Nat Photonics 1:449–458

    Google Scholar 

  115. Van Dorp WF, Van Someren B, Hagen CW et al (2005) Approaching the resolution limit of nanometer-scale electron beam-induced deposition. Nanoletters 5(7):1303–1307

    Google Scholar 

  116. Gentile F, Das G, Coluccio ML et al (2010) Ultra low concentrated molecular detection using super hydrophobic surface based biophotonic devices. Microelectron Eng 87:798–801

    Google Scholar 

  117. Anker JN et al (2008) Biosensing with plasmonic nanosensors. Nat Mater 7:442

    Google Scholar 

  118. Shegai T et al (2012) Directional scattering and hydrogen sensing by bimetallic Pd–Au nanoantennas. Nano Lett 12:2464–2469

    Google Scholar 

  119. Parkhutik VP, Shershulsky VI (1992) Theoretical modelling of porous oxide growth on aluminium. J Phys D Appl Phys 25:1258

    Google Scholar 

  120. Das G et al (2012) Surface enhanced Raman scattering substrate based on gold-coated anodic porous alumina template. Microelectron Eng 97:383

    Google Scholar 

  121. Salerno M, Patra N, Cingolani R (2009) Use of ionic liquid in fabrication, characterization, and processing of anodic porous alumina. Nanoscale Res Lett 4:865

    Google Scholar 

  122. Vogel E, Gbureck A, Kiefer W (2000) Vibrational spectroscopic studies on the dyes cresyl violet and coumarin. J Mol Struct 177:550–551

    Google Scholar 

  123. Kudelski A (2005) Raman studies of rhodamine 6G and crystal violet sub-monolayers on electrochemically roughened silver substrates: do dye molecules adsorb preferentially on highly SERS-active sites? Chem Phys Lett 414:271

    Google Scholar 

  124. Mondal B, Saha SK (2010) Fabrication of SERS substrate using nanoporous anodic alumina template decorated by silver nanoparticle. Chem Phys Lett 497:89

    Google Scholar 

  125. Jensen L, Schatz GC (2006) Resonance Raman scattering of rhodamine 6G as calculated using time-dependent density functional theory. J Phys Chem A 110:5973

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angelo Accardo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Accardo, A. et al. (2014). Metal Structures as Advanced Materials in Nanotechnology. In: Bhushan, B., Luo, D., Schricker, S., Sigmund, W., Zauscher, S. (eds) Handbook of Nanomaterials Properties. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31107-9_42

Download citation

Publish with us

Policies and ethics