Skip to main content

Properties of Ferroic Nanomaterials

  • Chapter
  • First Online:
Handbook of Nanomaterials Properties
  • 7062 Accesses

Abstract

Ferroic materials have attracted a significant amount of attention due to their ability to be polarized in an applied external field. This polarization response lends these materials to a wide variety of applications, including sensors, actuators, and other medical and electronic devices. However, the properties of ferroic materials change when the size scale of the material reaches the nanoscale. These, ferroic nanomaterials have unique properties compared to their bulk counterparts, which can be leveraged for novel applications. In this chapter, the unique properties of ferroic materials at the nanoscale will be discussed within the context of their bulk properties and new applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 629.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 799.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Spaldin NA (2010) Magnetic materials: fundamentals and applications. Cambridge University Press, New York

    Book  Google Scholar 

  2. Cullity BD, Graham CD (2008) Introduction to magnetic materials. IEEE Press, Piscataway

    Book  Google Scholar 

  3. Neel L (1953) Thermoremanent magnetization of fine powders. Rev Mod Phys 25(1):293–296

    Article  Google Scholar 

  4. Brown J, Fuller W (1963) Thermal fluctuations of a single-domain particle. Phys Rev 130(5):1677

    Article  Google Scholar 

  5. Pankhurst Q, Connolly J, Jones S, Dobson J (2003) Applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys 36:R167

    Article  Google Scholar 

  6. Pankhurst Q, Thanh N, Jones S, Dobson J (2009) Progress in applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys 42:224001

    Article  Google Scholar 

  7. Krishnan KM (2010) Biomedical nanomagnetics: a spin through possibilities in imaging, diagnostics, and therapy. IEEE Trans Magn 46(7):2523–2558

    Article  Google Scholar 

  8. Massart R (1981) Preparation of aqueous magnetic liquids in alkaline and acidic media. IEEE Trans Magn MAG-17:1247–1248

    Article  Google Scholar 

  9. Massart R, Dubois E, Cabuil V, Hasmonay E (1995) Preparation and properties of monodisperse magnetic fluids. J Magn Magn Mater 149:1–5

    Article  Google Scholar 

  10. Andrew JS, Clarke DR (2008) Enhanced ferroelectric phase content of polyvinylidene difluoride fibers with the addition of magnetic nanoparticles. Langmuir 24:8435–8438

    Article  Google Scholar 

  11. Andrew JS, Mack JJ, Clarke DR (2008) Electrospinning of polyvinylidene difluoride-based nanocomposite fibers. J Mater Res 23:105–114

    Article  Google Scholar 

  12. Lee J-H, Huh Y-M, Jun Y-W, Seo J-W, Jang J-T, Song H-T, Kim S, Cho E-J, Yoon H-G, Suh J-S, Cheon J (2007) Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nat Med 13(1):95–99

    Article  Google Scholar 

  13. Park J, An K, Hwang Y, Park J-G, Noh H-J, Kim J-Y, Park J-H, Hwang N-M, Hyeon T (2004) Ultra-large-scale syntheses of monodisperse nanocrystals. Nat Mater 3(12):891–895

    Article  Google Scholar 

  14. Park J, Joo J, Kwon SG, Jang Y, Hyeon T (2007) Synthesis of monodisperse spherical nanocrystals. Angew Chem Int Ed 46:4630–4660

    Article  Google Scholar 

  15. Park J, Lee E, Hwang NM, Kang MS, Kim SC, Hwang Y, Park JG, Noh HJ, Kini JY, Park JH, Hyeon T (2005) One-nanometer-scale size-controlled synthesis of monodisperse magnetic iron oxide nanoparticles. Angew Chem Int Ed 44(19):2872–2877

    Article  Google Scholar 

  16. Kinsella JM, Ananda S, Andrew JS, Grondek JF, Chien M-P, Scadeng M, Gianneschi NC, Ruoslahti E, Sailor MJ (2011) Enhanced magnetic resonance contrast of Fe3O4 nanoparticles trapped in a porous silicon nanoparticle host. Adv Mater 23(36):H248–H253

    Article  Google Scholar 

  17. Leslie-Pelecky DL, Rieke RD (1996) Magnetic properties of nanostructured materials. Chem Mater 8:1770–1783

    Article  Google Scholar 

  18. Tsunekawa S, Ishikawa K, Li Z-Q, Kawazoe Y, Kasuya A (2000) Origin of anomalous lattice expansion in oxide nanoparticles. Phys Rev Lett 85:3440–3443

    Article  Google Scholar 

  19. Smit J, Wijn H (1959) Ferrites: physical properties of ferromagnetic oxides in relation to their technical applications. Philips, Eindhoven

    Google Scholar 

  20. Cowburn RP (2002) Magnetic nanodots for device applications. J Magn Magn Mater 242:505–511

    Article  Google Scholar 

  21. Riehemann K, Schneider SW, Luger TA, Godin B, Ferrari M, Fuchs H (2009) Nanomedicine–challenge and perspectives. Angew Chem Int Ed Engl 48(5):872–897

    Article  Google Scholar 

  22. Herr JK, Smith JE, Medley CD, Shangguan DH, Tan WH (2006) Aptamer-conjugated nanoparticles for selective collection and detection of cancer cells. Anal Chem 78(9):2918–2924

    Article  Google Scholar 

  23. Perez JM, Josephson L, O’loughlin T, Hogemann D, Weissleder R (2002) Magnetic relaxation switches capable of sensing molecular interactions. Nat Biotechnol 20(8):816–820

    Article  Google Scholar 

  24. Park J, Kang E, Bae CJ, Park J-G, Noh H-J, Kim J-Y, Park J-H, Park HM, Hyeon T (2004) Synthesis, characterization, and magnetic properties of uniform-sized MnO nanospheres and nanorods. J Phys Chem B 108:113594–113598

    Google Scholar 

  25. Park J-H, Von Maltzahn G, Zhang L, Derfus AM, Simberg D, Harris TJ, Ruoslahti E, Bhatia SN, Sailor MJ (2009) Systematic surface engineering of magnetic nanoworms for in vivo tumor targeting. Small 5:694–700

    Article  Google Scholar 

  26. Park J-H, Von Maltzahn G, Zhang L, Schwartz MP, Ruoslahti E, Bhatia SN, Sailor MJ (2008) Magnetic iron oxide nanoworms for tumor targeting and imaging. Adv Mater 20:1630–1635

    Article  Google Scholar 

  27. Fan AP, Lau CW, Lu JZ (2005) Magnetic bead-based chemiluminescent metal immunoassay with a colloidal gold label. Anal Chem 77(10):3238–3242

    Article  Google Scholar 

  28. Tang DP, Yuan R, Chal YQ (2008) Ultrasensitive electrochemical immunosensor for clinical immunoassay using thionine-doped magnetic gold nanospheres as labels and horseradish peroxidase as enhancer. Anal Chem 80(5):1582–1588

    Article  Google Scholar 

  29. Rosensweig RE (2002) Heating magnetic fluid with alternating magnetic field. J Magn Magn Mater 252:370–374

    Article  Google Scholar 

  30. Sharifi I, Shokrollahi H, Amiri S (2012) Ferrite-based magnetic nanofluids used in hyperthermia applications. J Magn Magn Mater 324(6):903–915

    Article  Google Scholar 

  31. Naughton B, Majewski P, Clarke D (2007) Magnetic properties of nickel-zinc ferrite toroids prepared from nanoparticles. J Am Ceram Soc 90(11):3547–3553

    Article  Google Scholar 

  32. Lakhtakia A, Mackay T (2004) Size–dependent Bruggeman approach for dielectric–magnetic composite materials. Int J Electron Commun 58(1):1–3

    Google Scholar 

  33. Rudiger A, Shnueller T (2005) Nanosize ferroelectric oxides- tracking down the superparaelectric limit. Appl Phys A-Mater Sci Process 80:1247–1255

    Article  Google Scholar 

  34. Mehta RR, Silverman BD, Jacobs JT (1973) Depolarization fields in thin ferroelectric films. J Appl Phys 44(8):3379–3385

    Article  Google Scholar 

  35. Ishikawa K, Yoshikawa K, Okada N (1988) Size effect on the ferroelectric phase transition in PbTiO_{3} ultrafine particles. Phys Rev B 37(10):5852–5855

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer S. Andrew .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Andrew, J.S. (2014). Properties of Ferroic Nanomaterials. In: Bhushan, B., Luo, D., Schricker, S., Sigmund, W., Zauscher, S. (eds) Handbook of Nanomaterials Properties. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31107-9_39

Download citation

Publish with us

Policies and ethics