Skip to main content

Carbon Nanomaterials: A Review

  • Chapter
  • First Online:
Handbook of Nanomaterials Properties

Abstract

The present chapter explored the advancement of research in carbon nanomaterials (graphene and carbon nanotubes), in the areas of synthesis, properties and applications including electronics, field emission, biological and energy applications. The reported properties and applications of these carbon nanomaterials have opened up new opportunities for the future devices and materials. The knowledge presented here should lead to a better understanding of the key factors that can influence the future research directions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 629.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 799.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kroto HW, Heath JR, O’ Brien SC, Curl SC, Smalley RE (1985) C60: buckministerfullerene. Nature 318:162–163

    Google Scholar 

  2. Ajayan PM (1999) Nanotubes from carbon. Chem Rev 99:1787–1800

    Google Scholar 

  3. Huang X, Yin Z, Wu S, Qil X, He Q, Zhang Q, Yan Q, Boey F, Zhang H (2011) Graphene-based materials: synthesis, characterization, properties, and applications. Small 7:1876–1902

    Google Scholar 

  4. Choi W, Lahiri I, Seelaboyna R, Kang Y (2010) Synthesis of Graphene and its applications: a review. Crit Rev Solid State Mat Sci 35:52–71

    Google Scholar 

  5. Choi W, Lee J-W (2011) Graphene: synthesis and applications. CRC Press, Boca Raton, Publication Date: October 11 (2011). ISBN 10: 1439861870, 13: 978-1439861875

    Google Scholar 

  6. Foldvari M, Bagonluri M (2008) Carbon nanotubes as functional excipients for nanomedicines: I. Pharmaceutical properties. Nanomed Nanotech Biol Med 4(173)

    Google Scholar 

  7. Dresselhaus MS, Dresselhaus G, Saito R (1995) Physics of carbon nanotubes. Carbon 33:883–891

    Google Scholar 

  8. Avouris P, Chen Z, Perebeinos V (2007) Carbon-based electronics. Nat Nanotechnol 2(10):605

    Google Scholar 

  9. Ando T (2009) The electronic properties of graphene and carbon nanotubes. NPG Asia Mater 1(1):17–21

    Google Scholar 

  10. Anantram MP, Leonard F (2006) Physics of carbon nanotube electronic devices. Rep Prog Phys 69:507–561

    Google Scholar 

  11. Yao Z, Kane CL, Dekker C (2000) High-field electrical transport in single-wall carbon nanotubes. Phys Rev Lett 84:2941–2944

    Google Scholar 

  12. Kong J, Yenilmez E, Tombler TW, Kim W, Dai H, Laughlin RB, Liu L, Jayanthi CS, Wu SY (2001) Quantum interference and ballistic transmission in nanotube electron waveguides. Phys Rev Lett 87:106801

    Google Scholar 

  13. Awano Y, Sato S, Nihei M, Sakai T, Ohno Y, Mizutani T (2010) Carbon nanotubes for VLSI: interconnect and transistor applications. Proc IEEE 98(12)

    Google Scholar 

  14. Kreupl F, Graham AP, Duesberg GS, Steinhögl W, Liebau M, Unger E, Hönlein W (2002) Carbon nanotubes in interconnect applications. Microelectron Eng 64:399–408

    Google Scholar 

  15. Kreupl F, Graham AP, Liebau M, Duesberg GS, Seidel R, Unger E (2004) Carbon nanotubes for interconnect applications. In: Electron devices meeting, IEDM technical digest. IEEE International, pp 683–686

    Google Scholar 

  16. Awano Y, Sato S, Kondo D, Ohfuti M, Kawabata A, Nihei M, Yokoyama N (2006) Carbon nanotube via interconnect technologies: size-classified catalyst nanoparticles and low-resistance ohmic contact formation. Phys Stat Sol (a) 203:3611–3616

    Google Scholar 

  17. Horibe M, Nihei M, Kondo D, Kawabata A, Awano Y (2005) Carbon nanotube growth technologies using tantalum barrier layer for future ULSIs with Cu/low-k interconnect processes. Jpn J Appl Phys 44:5309

    Google Scholar 

  18. Tans S, Verschueren A, Dekker C (1998) Room-temperature transistor based on a single carbon nanotubes. Nature (London) 393(49)

    Google Scholar 

  19. Martel R, Schmidt T, Shea HR, Hertel T, Avouris P (1998) Single- and multi-wall carbon nanotube field-effect transistors. Appl Phys Lett 73:2447

    Google Scholar 

  20. McEuen PL, Fuhrer MS, Park H (2002) Single-walled carbon nanotube electronics. IEEE Trans Nanotechnol 1:78–85

    Google Scholar 

  21. Javey A, Kim H, Brink M, Wang Q, Ural A, Guo J, Mcintyre P, Mceuen P, Lundstrom M, Dai H (2002) High-κ dielectrics for advanced carbon nanotube transistors and logic gates. Nat Mater 1:241

    Google Scholar 

  22. Robertson DH, Brenner DW, Mintmire JW (1992) Energetics of nanoscale graphitic tubules. Phys Rev B 45:12592

    Google Scholar 

  23. Treacy MM, Ebbesen TW, Gibson JM (1996) Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 38:678–680

    Google Scholar 

  24. Krishnan A, Dujardin E, Ebbesen TW, Yianilos PN, Treacy MMJ (1998) Young’s modulus of single-walled nanotubes. Phys Rev B 58:14013

    Google Scholar 

  25. Yu MF, Lourie O, Dyer MJ, Moloni K, Kelly TF, Ruoff RS (2000) Strength and breaking mechanism of multi-walled carbon nanotubes under tensile load. Science 287:637

    Google Scholar 

  26. Salvetat JP, Briggs GAD, Bonard JM, Bacsa RR, Kulik AJ, Stockli T, Burnham NA, Forro L (1999) Elastic and shear moduli of single-walled carbon nanotube ropes. Phys Rev Lett 82:944

    Google Scholar 

  27. Yu MF, Files BF, Arepalli S, Ruoff RS (2000) Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys Rev Lett 84:5552

    Google Scholar 

  28. Shokrieh MM, Rafiee R (2010) A review of the mechanical properties of isolated carbon nanotubes and carbon nanotube composites. Mech Comp Mater 46:2

    Google Scholar 

  29. Lu Q, Bhattacharya B (2005) The role of atomistic simulations in probing the small-scale aspects of fracture – a case study on a single-walled carbon nanotubes. Eng Fract Mech 72:2037–2071

    Google Scholar 

  30. Rafii-Tabar H (2004) Computational modelling of thermo-mechanical and transport properties of carbon nanotubes. Phys Rep 390:235–452

    Google Scholar 

  31. Bathe KJ (1997) Finite element procedures. Prentice-Hall, New Delhi, pp 1–14

    Google Scholar 

  32. Qian D, Dickey E, Andrews R, Rantell T (2000) Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites. Appl Phys Lett 76:2868–2870

    Google Scholar 

  33. Xu X, Thwe MM, Christopher S, Liao K (2002) Mechanical properties and interfacial characteristics of carbon-nanotube-reinforced epoxy thin films. Appl Phys Lett 81:2833

    Google Scholar 

  34. Shanmugharaj AM, Bae JH, Lee KY, Noh WH, Lee SH, Ryu SH (2007) Physical and chemical characteristics of multiwalled carbon nanotubes functionalized with aminosilane and its influence on the properties of natural rubber composites. Comp Sci Technol 67:1813

    Google Scholar 

  35. Xiao KQ, Zhang LC (2004) The stress transfer efficiency of a single-walled carbon nanotube in epoxy matrix. J Mater Sci 39:4481

    Google Scholar 

  36. Choi Y-K, Gotoh Y, Sugimoto K, Song S-M, Yanagisawa T, Endo M (2005) Processing and characterization of epoxy nanocomposites reinforced by cup-stacked carbon nanotubes. Polymer 46(11489)

    Google Scholar 

  37. Liu YJ, Chen XL (2003) Continuum models of carbon nanotube-based composites by the BEM. Electron J Bound Element 1:316–335

    Google Scholar 

  38. Biercuk MJ, Llaguno MC, Radosavljevic M, Hyun JK, Johnson AT, Fischer JE (2002) Carbon nanotube composites for thermal management. Appl Phys Lett 80:2767–2769

    Google Scholar 

  39. Huang H, Liu CH, Wu Y, Fan S (2005) Aligned carbon nanotube composite films for thermal management. Adv Mater 17:1652–1656

    Google Scholar 

  40. Kim P, Shi L, Majumdar A, Mc Euen PL (2001) Thermal transport measurement of individual multiwalled nanotubes. Phys Rev Lett 87:215502

    Google Scholar 

  41. Pop E, Mann D, Wang Q, Goodson K, Dai H (2006) Thermal conductance of an individual single-wall carbon nanotube above room temperature. Nano Lett 6:96–100

    Google Scholar 

  42. Berber S, Kwon Y-K, Tomanek D (2000) Unusually high thermal conductivity of carbon nanotubes. Phys Rev Lett 84:4613–4616

    Google Scholar 

  43. Che J, Cagin T, Goddard WA (2000) III thermal conductivity of carbon nanotubes. Nanotechnology 11:65–69

    Google Scholar 

  44. Donadio D, Galli G (2007) Thermal conductivity of isolated and interacting carbon nanotubes: comparing results from molecular dynamics and the Boltzmann transport equation. Phys Rev Lett 99:255502

    Google Scholar 

  45. Hone J, Ellwood I, Muno M, Mizel A, Cohen ML, Zettl A, Rinzler AG, Smalley RE (1998) Thermoelectric power of single-walled carbon nanotubes. Phys Rev Lett 80:1042–1045

    Google Scholar 

  46. Bradley K, Jhi S-H, Collins PG, Hone J, Cohen ML, Louie SG, Zettl A (2000) Is the intrinsic thermoelectric power of carbon nanotubes positive ? Phys Rev Lett 85:4361–4364

    Google Scholar 

  47. Li W, Lu L, Lin ZD, Pan ZW, Xie SS (1999) Linear specific heat of carbon nanotubes. Phys Rev B 59:R9015

    Google Scholar 

  48. Yu CH, Shi L, Yao Z, Li DY, Majumdar A (2005) Thermal conductance and thermopower of an single-wall carbon nanotubes. Nano Lett 5:1842–1846

    Google Scholar 

  49. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191

    Google Scholar 

  50. Freitag M (2011) Graphene: trilayers unraveled. Nat Phys 7:596–597

    Google Scholar 

  51. Hass J, de Heer WA, Conrad EH (2008) The growth and morphology of epitaxial multilayer graphene. J Phys Cond Matter 20:323202

    Google Scholar 

  52. Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385–388

    Google Scholar 

  53. Ramanathan T, Abdala AA, Stankovich S, Dikin DA, Herrera-Alonso M, Piner RD, Adamson DH, Schniepp HC, Chen X, Ruoff RS, Nguyen ST, Aksay IA, Prud’Homme RK, Brinson LC (2008) Functionalized graphene sheets for polymer nanocomposites. Nat Nanotechnol 3:327–331

    Google Scholar 

  54. Rafiee MA, Rafiee J, Wang Z, Song H, Yu ZZ, Koratkar N (2009) Enhanced mechanical properties of nanocomposites at low graphene content. ACS Nano 3:3884–3890

    Google Scholar 

  55. Liu F, Ming P, Li J (2007) Ab initio calculation of ideal strength and phonon instability of graphene under tension. Phys Rev B 76:064120

    Google Scholar 

  56. Pereira VM, Castro Neto AH, Peres NMR (2009) Tight-binding approach to uniaxial strain in graphene. Phys Rev B 80:045401

    Google Scholar 

  57. Xu Z (2009) Graphene nanoribbons under tension. J Compd Theor Nanosci 6(625)

    Google Scholar 

  58. Lu Q, Huang R (2010) Effect of edge structure on elastic modulus and fracture of graphene nanoribbons under uniaxial tension. arXiv:1007. 3298

    Google Scholar 

  59. Zhao H, Min K, Aluru NR (2009) Size and chirality dependent elastic properties of graphene nanoribbons under uniaxial tension. Nano Lett 9:3012–3015

    Google Scholar 

  60. Min K, Aluru NR (2011) Mechanical properties of graphene under shear deformation. Appl Phys Lett 98:013113

    Google Scholar 

  61. Pei QX, Zhang YW, Shenoy VB (2010) A molecular dynamics study of the mechanical properties of hydrogen functionalized graphene. Carbon 48:898–904

    Google Scholar 

  62. Zheng QB, Geng Y, Wang SJ, Li ZG, Kim JK (2010) Effects of functional groups on the mechanical and wrinkling properties of graphene sheets. Carbon 48:4315–4322

    Google Scholar 

  63. Bunch JS, van der Zande AM, Verbridge SS, Frank IW, Tanenbaum DM, Parpia JM, Craighead HG (2007) Electromechanical resonators from graphene sheets. Science 315:490–493

    Google Scholar 

  64. Chen C, Rosenblatt S, Bolotin KI, Kalb W, Kim P, Kymissis I, Stormer HL, Heinz TF, Hone J (2009) Performance of monolayer graphene nanomechanical resonators with electrical readout. Nat Nanotech 4:861

    Google Scholar 

  65. Mizuta H, Ramirez MAG, Tsuchiya Y, Nagami T, Sawai S, Oda S, Okamoto M (2009) Multi-scale simulation of hybrid silicon nano-electromechanical (NEM) information systems. J Autom Mobile Robot Intell Syst 3:58

    Google Scholar 

  66. Dutta S, Pati SK (2010) Novel properties of graphene nanoribbons: a review. J Mater Chem 20:8207–8223

    Google Scholar 

  67. Han MY, Ozyilmaz B, Zhang Y (2007) Energy band gap engineering of graphene nanoribbons. Phys Rev Lett 98:206805

    Google Scholar 

  68. Erdogan E, Popov I, Rocha CG, Cuniberti G, Roche S, Seifert G (2011) Engineering carbon chains from mechanically stretched graphene-based materials. Phys Rev B 83:041401 (R)

    Google Scholar 

  69. Topsakal M, Ciraci S (2010) Elastic and plastic deformation of graphene, silicene, and boron nitride honeycomb nanoribbons under uniaxial tension: a first-principles density-functional theory study. Phys Rev B 81:024107

    Google Scholar 

  70. Castro Neto AH, Guinea F, Peres NMR, Novoselov KS, Geim AK (2009) The electronic properties of graphene. Rev Modern Phys 81:109

    Google Scholar 

  71. Berger C, Song Z, Li T, Li X, Ogbazghi AY, Feng R, Dai Z, Marchenkov AN, Conrad EH, First PN, de Heer WA (2004) Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J Phys Chem 108:19912–19916

    Google Scholar 

  72. Katsnelson MI (2007) Graphene: carbon in two dimensions. Mat Today 10:20–27

    Google Scholar 

  73. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669

    Google Scholar 

  74. Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, Dubonos SV, Firsov AA (2005) Two-dimensional gas of massless Dirac fermions in graphene. Nature 438:197

    Google Scholar 

  75. Novoselov KS, Jiang Z, Zhang Y, Morozov SV, Stormer HL, Zeitler U, Maan JC, Boebinger GS, Kim P, Geim AK (2007) Room-temperature quantum Hall effect in graphene. Science 315:1379

    Google Scholar 

  76. Novoselov KS, McCann E, Morozov SV, Fal’ko VI, Katsnelson MI, Zeitler U, Jiang D, Schedin F, Geim AK (2006) Unconventional quantum Hall effect and Berry’s phase of 2π in bilayer graphene. Nat Phys 2:177

    Google Scholar 

  77. McCann E (2006) Asymmetry gap in the electronic band structure of bilayer graphene. Phys Rev B 74:161403

    Google Scholar 

  78. Zhou SY, Gweon G-H, Fedorov AV, First PN, de Heer WA, Lee D-H, Guinea F, Castro Neto AH, Lanzara A (2007) Substrate-induced bandgap opening in epitaxial graphene. Nat Mater 6:770

    Google Scholar 

  79. Hass J, Varchon F, Millan-Otoya JE, Sprinkle M, Sharma N, de Heer WA, Berger C, First PN, Magaud L, Conrad EH (2008) Why multilayer graphene on 4H-SiC(0001) behaves like a single sheet of graphene. Phys Rev Lett 100:125504

    Google Scholar 

  80. Elias DC, Nair RR, Mohiuddin TMG, Morozov SV, Blake P, Halsall MP, Ferrari AC, Boukhvalov DW, Katsnelson MI, Geim AK, Novoselov KS (2009) Control of graphene’s properties by reversible hydrogenation: evidence for graphene. Science 323:610

    Google Scholar 

  81. Zhou SY, Siegel DA, Fedorov AV, Lanzara A (2008) Metal to insulator transition in epitaxial graphene induced by molecular doping. Phys Rev Lett 101:086402

    Google Scholar 

  82. Peres NMR (2009) The electronic properties of graphene and its bilayer. Vacuum 83:1248

    Google Scholar 

  83. Morozov SV, Novoselov KS, Schedin F, Jiang D, Firsov AA, Geim AK (2005) Two-dimensional electron and hole gases at the surface of graphite. Phys Rev B 72:201401

    Google Scholar 

  84. McCann E, Fal’ko VI (2006) Landau-level degeneracy and quantum hall effect in a graphite bilayer. Phys Rev Lett 96:086805

    Google Scholar 

  85. Mak KF, Shan J, Heinz TF (2010) Electronic structure of few-layer graphene: experimental demonstration of strong dependence on stacking sequence. Phys Rev Lett 104:176404

    Google Scholar 

  86. Muszynski R, Seger B, Kamat PV (2008) Decorating graphene sheets with gold nanoparticles. J Phys Chem C 112:5263

    Google Scholar 

  87. Chen S, Wu Q, Mishra C, Kang J, Zhang H, Cho K, Cai W, Balandin AA, Ruoff RS (2012) Thermal conductivity of isotopically modified graphene. Nat Mater 11:203

    Google Scholar 

  88. Cai W, Moore AL, Zhu Y, Li X, Chen S, Shi L, Ruoff RS (2010) Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition. Nano Lett 10:1645–1651

    Google Scholar 

  89. Saito K, Nakamura J, Natori A (2007) Ballistic thermal conductance of a graphene sheet. Phys Rev B 76:115409

    Google Scholar 

  90. Ghosh S, Bao W, Nika DL, Subrina S, Pokatilov EP, Lau CN, Balandin AA (2010) Dimensional crossover of thermal transport in few-layer graphene. Nat Mater 9:555–558

    Google Scholar 

  91. Schabel MC, Martins JL (1992) Energetics of interplanar binding in graphite. Phys Rev B 46:7185

    Google Scholar 

  92. Liao AD, Wu JZ, Wang XR, Tahy K, Jena D, Dai HJ, Pop E (2011) Thermally limited current carrying ability of graphene nanoribbons. Phys Rev Lett 106:256801

    Google Scholar 

  93. Seol JH, Jo I, Moore AL, Lindsay L, Aitken ZH, Pettes MT, Li XS, Yao Z, Huang R, Broido D, Mingo N, Ruoff RS, Shi L (2010) Two-dimensional phonon transport in supported graphene. Science 328:213

    Google Scholar 

  94. Jang W, Chen Z, Bao W, Lau CN, Dames C (2010) Thickness-dependent thermal conductivity of encased graphene and ultrathin graphite. Nano Lett 10:3909

    Google Scholar 

  95. Qiu B, Ruan X (2012) Reduction of spectral phonon relaxation times from suspended to supported graphene. Appl Phys Lett 100:193101

    Google Scholar 

  96. Aksamija Z, Knezevic I (2011) Lattice thermal conductivity of graphene nanoribbons: anisotropy and edge roughness scattering. Appl Phys Lett 98:141919

    Google Scholar 

  97. Yamamoto T, Watanabe K (2004) Empirical-potential study of phonon transport in graphitic ribbons. Phys Rev B 70:245402

    Google Scholar 

  98. Li W, Sevincli H, Cuniberti G, Roche S (2010) Phonon transport in large scale carbon-based disordered materials: implementation of an efficient order-N and real-space Kubo methodology. Phys Rev B 82:041410 (R)

    Google Scholar 

  99. Murali R, Yang Y, Brenner K, Beck T, Meindl JD (2009) Breakdown current density of graphene nano ribbons. Appl Phys Lett 94:243114-1-3

    Google Scholar 

  100. Ong ZY, Pop E (2011) Effect of substrate modes on thermal transport in supported graphene. Phys Rev B 84:075471

    Google Scholar 

  101. Huang Z, Fisher TS, Murthy JY (2010) Simulation of phonon transmission through graphene and graphene nanoribbons with a Green’s function method. J Appl Phys 108:094319

    Google Scholar 

  102. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56

    Google Scholar 

  103. Dai H, Hafner JH, Rinzler AG, Colbert DT, Smalley RE (1996) Nanotubes as nanoprobes in scanning probe microscopy. Nature 384:147

    Google Scholar 

  104. Mahar B, Laslau C, Yip R, Sun Y (2007) Development of carbon nanotube-based sensors – a review. IEEE Sens J 7:266

    Google Scholar 

  105. Bianco A, Kostarelos K, Prato M (2005) Applications of carbon nanotubes in drug delivery. Curr Opin Chem Biol 9:674–679

    Google Scholar 

  106. Ebbesen TW, Ajayan PM (1992) Large-scale synthesis of carbon nanotubes. Nature 358:220–222

    Google Scholar 

  107. Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 363:603–605

    Google Scholar 

  108. Journet C, Maser WK, Bernier P, Loiseau A, Lamy De La Chapelle M, Lefrant S, Deniard P, Lee R, Fischer JE (1997) Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature 388:756–758

    Google Scholar 

  109. Seraphin S, Zhou D, Jiao J, Minke MA, Wang S, Yadav T, Withers JC (1994) Catalytic role of nickel, palladium, and platinum in the formation of carbon nanoclusters. Chem Phys Lett 217:191–198

    Google Scholar 

  110. Saito Y, Okuda M, Fujimoto N, Yoshikawa T, Tomita M, Hayashi T (1994) Single-wall carbon nanotubes growing radially from Ni fine particles formed by arc evaporation. Jpn J Appl Phys 33:L526–L529

    Google Scholar 

  111. Chen B, Zhao X, Inoue S, Ando Y (2010) Fabrication and dispersion evaluation of single-wall carbon nanotubes produced by FH-arc discharge method. J Nanosci Nanotechnol 10:3973–3977

    Google Scholar 

  112. Fan WW, Zhao J, Lv YK, Bao WR, Liu XG (2010) Synthesis of SWNTs from charcoal by arc-discharging. J Wuhan Univ Technol Mater Sci Ed 25:194–196

    Google Scholar 

  113. Wang HF, Li ZH, Inoue S, Ando Y (2010) Influence of Mo on the growth of single-walled carbon nanotubes in arc discharge. J Nanosci Nanotechnol 10:3988–3993

    Google Scholar 

  114. Shimotani K, Anazawa K, Watanabe H, Shimizu M (2001) New synthesis of multi-walled carbon nanotubes using an arc discharge technique under organic molecular atmospheres. Appl Phys A Mater Sci Process 73:451–454

    Google Scholar 

  115. Jiang Y, Wang H, Shang XF, Li ZH, Wang M (2009) Influence of NH3 atmosphere on the growth and structures of carbon nanotubes synthesized by the arc-discharge method. Inorg Mater 45:1237–1239

    Google Scholar 

  116. Parkansky N, Boxman RL, Alterkop B, Zontag I, Lereah Y, Barkay Z (2004) Single-pulse arc production of carbon nanotubes in ambient air. J Phys D Appl Phys 37:2715–2719

    Google Scholar 

  117. Jung SH, Kim MR, Jeong SH, Kim SU, Lee OJ, Lee KH, Suh JH, Park CK (2003) High-yield synthesis of multi-walled carbon nanotubes by arc discharge in liquid nitrogen. Appl Phys A Mater Sci Process 76:285–286

    Google Scholar 

  118. Guo JJ, Wang XM, Yao YL, Yang XW, Liu XG, Xu BS (2007) Structure of nanocarbons prepared by arc discharge in water. Mater Chem Phys 105:175–178

    Google Scholar 

  119. Guo T, Nikolaev P, Thess A, Colbert DT, Smalley RE (1995) Catalytic growth of single-walled manotubes by laser vaporization. Chem Phys Lett 243:49–54

    Google Scholar 

  120. Lebel LL, Aissa B, El Khakani MA, Therriault D (2010) Preparation and mechanical characterization of laser ablated single-walled carbon-nanotubes/polyurethane nanocomposite microbeams. Comp Sci Technol 70:518–524

    Google Scholar 

  121. Kusaba M, Tsunawaki Y (2006) Production of single-wall carbon nanotubes by a XeCl excimer laser ablation. Thin Solid Films 506:255–258

    Google Scholar 

  122. Zhang H, Ding Y, Wu C, Chen Y, Zhu Y, He Y, Zhong S (2003) The effect of laser power on the formation of carbon nanotubes prepared in CO2 continuous wave laser ablation at room temperature. Phys B 325:224–229

    Google Scholar 

  123. Stramel AA, Gupta MC, Lee HR, Yu J, Edwards WC (2010) Pulsed laser deposition of carbon nanotube and polystyrene-carbon nanotube composite thin films. Opt Lasers Eng 48:1291–1295

    Google Scholar 

  124. Scott CD, Arepalli S, Nikolaev P, Smalley RE (2001) Growth mechanisms for single-wall carbon nanotubes in a laser-ablation process. Appl Phys A 72:573–580

    Google Scholar 

  125. Kumar M, Ando Y (2010) Chemical vapor deposition of carbon nanotubes: a review on growth mechanism and mass production. J Nanosci Nanotechnol 10:3739–3758

    Google Scholar 

  126. Ren ZF, Huang ZP, Wang DZ, Wen JG, Xu JW, Wang JH, Calvet LE, Chen J, Klemic JF, Reed MA (1999) Growth of a single freestanding multiwall carbon nanotube on each nanonickel dot. Appl Phys Lett 75:1086

    Google Scholar 

  127. Meyyappan M (2009) A review of plasma enhanced chemical vapour deposition of carbon nanotubes. J Phys D Appl Phys 42:213001

    Google Scholar 

  128. Ren ZF, Huang ZP, Xu JW, Wang JH, Bush P, Siegel MP, Provencio PN (1998) Synthesis of large arrays of well-aligned carbon nanotubes on glass. Science 282:1105–1107

    Google Scholar 

  129. Masako Y, Rie K, Takeo M, Yoshimasa O, Susumu Y, Etsuro O (1995) Specific conditions for Ni catalyzed carbon nanotube growth by chemical vapor deposition. Appl Phys Lett 67:2477–2479

    Google Scholar 

  130. Byon HR, Lim H, Song HJ, Choi HC (2007) A synthesis of high purity single-walled carbon nanotubes from small diameters of cobalt nanoparticles by using oxygen-assisted chemical vapor deposition process. Bull Korean Chem Soc 28:2056–2060

    Google Scholar 

  131. Chen YM, Zhang HY (2011) In: Bu JL, Jiang ZY, Jiao S (eds) The super-capacitor properties of aligned carbon nanotubes array prepared by radio frequency plasma-enhanced hot filament chemical vapor deposition. Advanced Materials Research 150–151:1560–1563

    Google Scholar 

  132. Kim HD, Lee JH, Choi WS (2011) Direct growth of carbon nanotubes with a catalyst of nickel nanoparticle-coated alumina powders. J Korean Phys Soc 58:112–115

    Google Scholar 

  133. Xu Y, Dervishi E, Biris AR, Biris AS (2011) Chirality-enriched semiconducting carbon nanotubes synthesized on high surface area MgO-supported catalyst. Mater Lett 65:1878–1881

    Google Scholar 

  134. Zhu YJ, Lin TJ, Liu QX, Chen YL, Zhang GF, Xiong HF, Zhang HY (2006) The effect of nickel content of composite catalysts synthesized by hydrothermal method on the preparation of carbon nanotubes. Mater Sci Eng B 127:198–202

    Google Scholar 

  135. Lee O, Jung J, Doo S, Kim SS, Noh TH, Kim KI, Lim YS (2010) Effects of temperature and catalysts on the synthesis of carbon nanotubes by chemical vapor deposition. Met Mater Int 16:663–667

    Google Scholar 

  136. Afolabi AS, Abdulkareem AS, Mhlanga SD, Iyuke SE (2011) Synthesis and purification of bimetallic catalysed carbon nanotubes in a horizontal CVD reactor. J Exp Nanosci 6:248–262

    Google Scholar 

  137. Dumpala S, Jasinski JB, Sumanasekera GU, Sunkara MK (2011) Large area synthesis of conical carbon nanotube arrays on graphite and tungsten foil substrates. Carbon 49:2725–2734

    Google Scholar 

  138. Zhu J, Yudasaka M, Iijima S (2003) A catalytic chemical vapor deposition synthesis of double-walled carbon nanotubes over metal catalysts supported on a mesoporous material. Chem Phys Lett 380:496–502

    Google Scholar 

  139. Ramesh P, Okazaki T, Taniguchi R, Kimura J, Sugai T, Sato K, Ozeki Y, Shinohara H (2005) Selective chemical vapor deposition synthesis of double-wall carbon nanotubes on mesoporous silica. J Phys Chem B 109:1141–1147

    Google Scholar 

  140. Flahaut E, Laurent C, Peigney A (2005) Catalytic CVD synthesis of double and triple-walled carbon nanotubes by the control of the catalyst preparation. Carbon 43:375–383

    Google Scholar 

  141. Fotopoulos N, Xanthakis JP (2010) A molecular level model for the nucleation of a single-wall carbon nanotube cap over a transition metal catalytic particle. Diamond Relat Mater 19:557–561

    Google Scholar 

  142. Zhang DS, Shi LY, Fang JH, Dai K, Li XK (2006) Preparation and desalination performance of multiwall carbon nanotubes. Mater Chem Phys 97:415–419

    Google Scholar 

  143. Li G (2010) Synthesis of well-aligned carbon nanotubes on the NH3 pretreatment Ni catalyst films. Russ J Phys Chem A 84:1560–1565

    Google Scholar 

  144. Cui T, Lv RT, Kang FY, Hu Q, Gu JL, Wang KL, Wu DH (2010) Synthesis and enhanced field-emission of thin-walled, open-ended, and well-aligned N-doped carbon nanotubes. Nanoscale Res Lett 5:941–948

    Google Scholar 

  145. Novoselov KS, Jiang D, Schedin F, Booth TJ, Khotkevich VV, Morozov SV, Geim AK (2005) Two-dimensional atomic crystals. Proc Natl Acad Sci USA 102:10451

    Google Scholar 

  146. Yu OK, Lian J, Siriponglert S, Li H, Chen YP, Pei SS (2008) Graphene segregated on Ni surfaces and transferred to insulators. Appl Phys Lett 93:113103

    Google Scholar 

  147. De Arco LG, Zhang Y, Kumar A, Zhou C (2009) Synthesis, transfer, and devices of single and few-layer graphene by chemical vapor deposition. IEEE Trans Nanotechnol 8:135

    Google Scholar 

  148. Reina A, Jia X, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus MS, Kong J (2009) Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett 9:30

    Google Scholar 

  149. Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Kim KS, Kim KS, Ahn J-H, Kim P, Choi J-Y, Hong BH (2009) Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457:706

    Google Scholar 

  150. Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee SK, Colombo L, Ruoff RS (2009) Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324:1312

    Google Scholar 

  151. Bae S, Kim H, Lee Y, Xu X, Park J-S, Zheng Y, Balakrishnan J, Lei T, Kim HR, Song YI, Kim Y-J, Kim KS, Ozyilmaz B, Ahn J-H, Hong BH, Iijima S (2010) Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotechnol 5:574

    Google Scholar 

  152. Yu Q, Jauregui LA, Wu W, Colby R, Tian J, Su Z, Cao H, Liu Z, Pandey D, Wei D, Chung TF, Peng P, Guisinger NP, Stach EA, Bao J, Pei S-S, Chen YP (2011) Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition. Nat Mater 10:443

    Google Scholar 

  153. Kim H, Mattevi C, Calvo MR, Oberg JC, Artiglia L, Agnoli S, Hirjibehedin CF, Chhowalla M, Saiz E (2012) Activation energy paths for graphene nucleation and growth on Cu. ACS Nano 6:3614

    Google Scholar 

  154. Vlassiouk I, Fulvio P, Meyer H, Lavrik N, Dai S, Datskos P, Smirnov S (2013) Large scale atmospheric pressure chemical vapor deposition of graphene. Carbon 54:58

    Google Scholar 

  155. Han GH, Gunes F, Bae JJ, Kim ES, Chae SJ, Shin H-J, Choi J-Y, Pribat D, Lee YH (2011) Influence of copper morphology in forming nucleation seeds for graphene growth. Nano Lett 11:4144

    Google Scholar 

  156. Luo Z, Lu Y, Singer DW, Berck ME, Somers LA, Goldsmith BR, Johnson ATC (2011) Effect of substrate roughness and feedstock concentration on growth of wafer-scale graphene at atmospheric pressure. Chem Mater 23:1441

    Google Scholar 

  157. Tao L, Lee J, Holt M, Chou H, McDonnell SJ, Ferrer DA, Babenco MG, Wallace RM, Banerjee SK, Ruoff RS, Akinwande D (2012) Uniform wafer-scale chemical vapor deposition of graphene on evaporated Cu (111) film with quality comparable to exfoliated monolayer. J Phys Chem C 116:24068

    Google Scholar 

  158. Murdock AT, Koos A, Britton TB, Houben L, Batten T, Zhang T, Wilkinson AJ, Dunin-Borkowski RE, Lekka CE, Grobert N (2013) Controlling the orientation, edge geometry, and thickness of chemical vapor deposition graphene. ACS Nano 7:1351

    Google Scholar 

  159. Wang H, Wang G, Bao P, Yang S, Zhu W, Xie X, Zhang W-J (2012) Controllable synthesis of submillimeter single-crystal monolayer graphene domains on copper foils by suppressing nucleation. J Am Chem Soc 134:3627

    Google Scholar 

  160. Yan Z, Lin J, Peng Z, Sun Z, Zhu Y, Li L, Xiang C, Samuel EL, Kittrell C, Tour JM (2012) Toward the synthesis of wafer-scale single-crystal graphene on copper foils. ACS Nano 6:9110

    Google Scholar 

  161. Vlassiouk I, Regmi M, Fulvio R, Dai S, Datskos P, Eres G, Smirnov S (2011) Role of hydrogen in chemical vapor deposition growth of large single-crystal graphene. ACS Nano 5:6069

    Google Scholar 

  162. Wang J, Zhu M, Outlaw RA, Zhao X, Manos DM, Holloway BC (2004) Synthesis of carbon nanosheets by inductively coupled radio-frequency plasma enhanced chemical vapor deposition. Carbon 42:2867

    Google Scholar 

  163. Wang JJ, Zhu MY, Outlaw RA, Zhao X, Manos DM, Holloway BC, Mammana VP (2004) Free-standing subnanometer graphite sheets. Appl Phys Lett 85:1265

    Google Scholar 

  164. Nandamuri G, Roumimov S, Solanki R (2010) Remote plasma assisted growth of graphene films. Appl Phys Lett 96:154101

    Google Scholar 

  165. Qi JL, Zheng WT, Zheng XH, Wang X, Tian HW (2011) Relatively low temperature synthesis of graphene by radio frequency plasma enhanced chemical vapor deposition. Appl Surf Sci 257:6531

    Google Scholar 

  166. Kim Y, Song W, Lee SY, Jeon C, Jung W, Kim M, Park C-Y (2011) Low-temperature synthesis of graphene on nickel foil by microwave plasma chemical vapor deposition. Appl Phys Lett 98:263106

    Google Scholar 

  167. Kalita G, Kayastha MS, Uchida H, Wakita K, Umeno M (2012) Direct growth of nanographene films by surface wave plasma chemical vapor deposition and their application in photovoltaic devices. RSC Advances 2:3225

    Google Scholar 

  168. Sutter P (2009) How silicon leaves the scene. Nat Mater 8:171

    Google Scholar 

  169. Kageshima H, Hibino H, Tanabe S (2012) The physics of epitaxial graphene on SiC(0001). J Phys: Condens Matter 24:314215

    Google Scholar 

  170. Badami DV (1962) Graphitization of α-silicon carbide. Nature 193:569

    Google Scholar 

  171. Zhou SY, G–H G, Graf J, Fedorav AV, Spataru CD, Diehl RD, Kopelevich Y, D–H L, Louie SG, Lanzara A (2006) First direct observation of dirac Fermions in graphite. Nat Phys 2:595

    Google Scholar 

  172. Ohta T, Bostwick A, McChesney JL, Seyller T, Horn K, Rotenberg E (2007) Interlayer interaction and electronic screening in multilayer graphene investigated with angle-resolved photoemission spectroscopy. Phys Rev Lett 98:206802

    Google Scholar 

  173. Kageshima H, Hibino H, Yamaguchi H, Nagase M (2011) Theoretical study on epitaxial graphene growth by Si sublimation from SiC (0001) surface. Jpn J Appl Phys 50:095601

    Google Scholar 

  174. Dmitriev AN, Cherednichenko DI (2011) Formation of graphene layers by vacuum sublimation of silicon carbide using a scanning heat source. Semiconductors 45:1656

    Google Scholar 

  175. Hibino H, Kageshima H, Maeda F, Nagase M, Kobayasi Y, Yamaguchi H (2008) Microscopic thickness determination of thin graphite films formed on SiC from quantized oscillation in reflectivity of low-energy electrons. Phys Rev B 77:075413

    Google Scholar 

  176. Hibino H, Tanabe S, Mizuno S, Kageshima H (2012) Growth and electronic transport properties of epitaxial graphene on SiC. J Phys D:Appl Phys 45:154008

    Google Scholar 

  177. Kim K, Park J, Kim C, Choi W, Seo Y, Ahn J, Park I-S (2012) Removing graphite flakes for preparing mechanically exfoliated graphene sample. Micro Nano Lett 7:1133

    Google Scholar 

  178. Jayasena B, Reddy CD, Subbiah S (2013) Separation, folding and shearing of graphene layers during wedge-based mechanical exfoliation. Nanotechnology 24:205301

    Google Scholar 

  179. Cai D, Song M (2007) Preparation of fully exfoliated graphite oxide nanoplatelets in organic solvents. J Mater Chem 17:3678

    Google Scholar 

  180. Israelachvili J (2011) Intermolecular and surface force, 3rd edn. Academic, Boston

    Google Scholar 

  181. Paredes JI, Villar-Rodil S, Martinez-Alonso A, Tascon JMD (2008) Graphene oxide dispersions in organic solvents. Langmuir 24:10564

    Google Scholar 

  182. Liu W, Wang JN (2011) Direct exfoliation of graphene in organic solvents with addition of NaOH. Chem Commun 47:6888

    Google Scholar 

  183. Pei S, Cheng H-M (2012) The reduction of graphene oxide. Carbon 50:3210

    Google Scholar 

  184. Srivastava PK, Ghosh S (2013) Eliminating defects from graphene monolayers during chemical exfoliation. Appl Phys Lett 102:043102

    Google Scholar 

  185. Schniepp HC, J–L L, McAllister MJ, Sai H, Alonso MH, Adamson DH, Prud’homme RK, Car R, Saville DA, Aksay IA (2006) Functionalized single graphene sheets derived from splitting graphite oxide. J Phys Chem B 110:8535

    Google Scholar 

  186. McAllister MJ, Li JL, Adamson DH, Schnlepp HC, Abdalam AA, Liu J, Aksay IA (2007) Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem Mater 19:4396

    Google Scholar 

  187. Chen W, Yan L (2010) Preparation of graphene by a low-temperature thermal reduction at atmosphere pressure. Nanoscale 2:559

    Google Scholar 

  188. Liu X, Kim H, Guo LJ (2013) Optimization of thermally reduced graphene oxide for an efficient hole transport layer in polymer solar cells. Organ Electron 14:591

    Google Scholar 

  189. Park O-K, Hahm MG, Lee S, Joh HI, Na SI, Vajtai R, Lee JH, Ku B-C, Ajayan PM (2012) In situ synthesis of thermochemically reduced graphene oxide conducting nanocomposites. Nano Lett 12:1789

    Google Scholar 

  190. Al-Temimy A, Riedl C, Starke U (2009) Low temperature growth of epitaxial graphene on SiC induced by carbon evaporation. Appl Phys Lett 95:231907

    Google Scholar 

  191. Hackley J, Ali D, DiPasquale J, Demaree JD, Richardson CJK (2009) Graphitic carbon growth on Si(111) using solid source molecular beam epitaxy. Appl Phys Lett 95:133114

    Google Scholar 

  192. Garcia JM, He R, Jiang MP, Yan J, Pinczuk A, Zuev YM, Kim KS, Kim P, Baldwin K, West KW, Pfeiffer LN (2010) Multilayer graphene films grown by molecular beam deposition. Solid State Commun 150:809

    Google Scholar 

  193. Garcia JM, Wurstbauer U, Levy A, Pfeiffer LN, Pinczuk A, Plaut AS, Wang L, Dean CR, Buizza R, Van Der Zande AM, Hone J, Watanabe K, Taniguchi T (2012) Graphene growth on h-BN by molecular beam epitaxy. Solid State Commun 152:975

    Google Scholar 

  194. Li J-L, Kudin KN, McAllister MJ, Prud’homme RK, Aksay IA, Car P (2006) Oxygen-driven unzipping of graphitic materials. Phys Rev Lett 96:176101

    Google Scholar 

  195. Ajayan PM, Yakobson BI (2006) Oxygen breaks into carbon world. Nature 441:818

    Google Scholar 

  196. Kosynkin DV, Higginbotham AL, Sinitskii A, Lomeda JR, Dimiev A, Price BK, Tour JM (2009) Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458:872

    Google Scholar 

  197. Jiao L, Zhang L, Wang X, Diankov G, Dai H (2009) Narrow graphene nanoribbons from carbon nanotubes. Nature 458:877

    Google Scholar 

  198. Zhuang N, Liu C, Jia L, Wei L, Cai J, Guo Y, Zhang Y, Hu X, Chen J, Chen X, Tang Y (2013) Clean unzipping by steam etching to synthesize graphene nanoribbons. Nanotechnology 24:325604

    Google Scholar 

  199. Iwai H (2009) Roadmap for 22 nm and beyond. Microelectron Eng 86:1520–1528

    Google Scholar 

  200. Wang C, Takei K, Takahashi T, Javey A (2013) Carbon nanotube electronics–moving forward. Chem Soc Rev 42:2592

    Google Scholar 

  201. Charlier J-C, Blase X, Roche S (2007) Electronic and transport properties of nanotubes. Rev Mod Phys 79:677–732

    Google Scholar 

  202. Javey A, Guo J, Wang Q, Lundstrom M, Dai H (2003) Ballistic carbon nanotube transistors. Nature 424:654–657

    Google Scholar 

  203. Bradley K, Gabriel JCP, Star A, Gruner G (2003) Short-channel effects in contact-passivated nanotube chemical sensors. Appl Phys Lett 83:3821

    Google Scholar 

  204. Ionescu AM, Riel H (2011) Tunnel field-effect transistors as energy-efficient electronic switches. Nature 479:329

    Google Scholar 

  205. Jensen K, Weldon J, Garcia H, Zettl A (2007) Nanotube radio. Nano Lett 7:3508

    Google Scholar 

  206. Franklin AD, Luisier M, Han SJ, Tulevski G, Breslin CM, Gignac L, Lundstrom MS, Haensch W (2012) Sub – 10 nm carbon nanotube transistor. Nano Lett 12:758

    Google Scholar 

  207. Cao Q, Rogers JA (2009) Ultrathin films of single-walled carbon nanotubes for electronics and sensors: a review of fundamental and applied aspects. Adv Mater 21:29

    Google Scholar 

  208. Park H, Afzali A, Han S-J, Tulevski GS, Franklin AD, Tersoff J, Hannon JB, Haensch W (2012) High-density integration of carbon nanotubes via chemical self-assembly. Nat Nanotechnol 7:787–791

    Google Scholar 

  209. Snow ES, Campbell PM, Ancona MG, Novak JP (2005) High-mobility carbon-nanotube thin film transistors on a polymeric substrate. Appl Phys Lett 86:033105

    Google Scholar 

  210. Sun DM, Timmermans MY, Tian Y, Nasibulin AG, Kauppinen EI, Kishimoto S, Mizutani T, Ohno Y (2011) Flexible high-performance carbon nanotube integrated circuits. Nat Nanotechnol 6:156

    Google Scholar 

  211. McCarthy MA, Liu B, Donoghue EP, Kravchenko I, Kim DY, So F, Rinzler AG (2011) Low-voltage, low-power, organic light-emitting transistors for active matrix displays. Science 332:570

    Google Scholar 

  212. van der Veen MH, Vereecke B, Sugiura M, Kashiwagi Y, Ke X, Cott DJ, Vanpaemel JKM, Vereecken PM, Gendt SD, Huyghebaert C, Tökei Z (2012) Electrical and structural characterization of 150 nm CNT contacts with Cu damascene top metallization. In: Paper presented at the 2012 I.E. international interconnect technology conference (IITC), San Jose, 4 to 6 June 2012

    Google Scholar 

  213. Rinzler AG, Hafner JH, Nikolaev P, Nordlander P, Colbert DT, Smalley RE, Lou L, Kim SG, Tománek D (1995) Unraveling nanotubes: field emission from an atomic wire. Science 269:1550–1553

    Google Scholar 

  214. Saito Y, Uemura S (2000) Field emission from carbon nanotubes and its applications to electron sources. Carbon 38:169–182

    Google Scholar 

  215. Modi A, Koratkar N, Lass E, Wei B, Ajayan PM (2003) Miniaturized gas ionization sensors using carbon nanotubes. Nature 424:171

    Google Scholar 

  216. Bower C, Zhu W, Shalom D, Lopez D, Chen LH, Gammel PL, Jin S (2002) On-chip vacuum microtriode using carbon nanotube field emitters. Appl Phys Lett 80:3820

    Google Scholar 

  217. Choi WB, Jin YW, Kim HY, Lee SJ, Yun MJ, Kang JH, Choi YS, Park NS, Lee NS, Kim JM (2001) Electrophoresis deposition of carbon nanotubes for triode-type field emission display. Appl Phys Lett 1547:78

    Google Scholar 

  218. Choi WB, Lee YH, Chung DS, Lee NS, Kim JM (2000) Field emission from 4.5˝ single-walled and multi-walled carbon nanotube films. J Vac Sci Tech B 18(2):1054–1058

    Google Scholar 

  219. Cheng Y, Zhou O (2003) Electron field emission from carbon nanotubes. CR Phys 4:1021

    Google Scholar 

  220. Bonard JM, Salvetat JP, Stockli T, Deheer WA, Forro L, Chatelain A (1998) Field emission from single-wall carbon nanotube film. Appl Phys Lett 73:918–920

    Google Scholar 

  221. Seko K, Kinoshita J, Saito Y (2005) In situ transmission electron microscopy of field-emitting bundles of double wall carbon nanotubes. Jpn J Appl Phys 44:L743–L745

    Google Scholar 

  222. Son Y-W, Oh S, Ihm J, Han S (2005) Field emission properties of double-wall carbon nanotubes. Nanotechnol 16:125–128

    Google Scholar 

  223. Hiraoka T, Yamada T, Hata K, Futaba DN, Kurachi H, Uemura S, Yumura M, Iijima S (2006) Synthesis of single and double walled carbon nanotubes forests on conducting metal foils. J Am Chem Soc 128:13338–13339

    Google Scholar 

  224. Charlier J-C, Terrones M, Baxendale M, Meunier V, Zacharia T, Ru-pesinghe NL, Hsu WK, Grobert N, Terrones H, Amaratunga GAJ (2002) Enhanced electron field emission in B-doped carbon nanotubes. Nano Lett 2:1191

    Google Scholar 

  225. Golberg D, Dorozhkin PS, Bando Y, Dong ZC, Tang CC, Uemura Y, Grobert N, Reyes-Reyes M, Terrones H, Terrones M (2003) Structure, transport and field-emission properties of compound nanotubes: CNx vs. BNCx (x < 0.1). Appl Phys A Mater 76:499

    Google Scholar 

  226. Doytcheva M, Kaiser M, Reyes-Reyes M, Terrones M, de Jonge N (2004) Electron emission from individual nitrogen-doped multi-walled carbon nanotubes. Chem Phys Lett 396:126

    Google Scholar 

  227. Lahiri I, Seelaboyina R, Hwang JY, Banerjee R, Choi W (2010) Enhanced field emission from multi-walled carbon nanotubes grown on pure copper substrate. Carbon 48:1531–1538

    Google Scholar 

  228. Seelaboyina R, Huang J, Choi WB (2006) Enhanced field emission of thin-multiwall carbon nanotubes by electron multiplication from microchannel plate. Appl Phys Lett 88:194104

    Google Scholar 

  229. Seelaboyina R, Bodepalli S, Noh K, Jeon M, Choi W (2008) Enhanced field emission from aligned multistage carbon nanotube emitter arrays. Nanotechnology 19:065605

    Google Scholar 

  230. Dai L, Chang DW, Baek J-B, Lu W (2012) Carbon nanomaterials for advanced energy conversion and storage. Small 8:1130

    Google Scholar 

  231. Evanoff K, Khan J, Balandin AA, Magasinski A, Ready WJ, Fuller TF, Yushin G (2012) Towards ultrathick battery electrodes: aligned carbon nanotube-enabled architecture. Adv Mater 24:533

    Google Scholar 

  232. Verma VP, Das S, Lahiri I, Choi W (2010) Large-area graphene on polymer film for flexible and transparent anode in field emission device. Appl Phys Lett 96:203108

    Google Scholar 

  233. Lahiri I, Oh SW, Hwang JY, Cho S, Sun YK, Banerjee R, Choi W (2010) High capacity and excellent stability of lithium ion battery anode using interface-controlled binder-free multiwall carbon nanotubes grown on copper. ACS Nano 4(6):3440–3446

    Google Scholar 

  234. Lahiri I, Das S, Kang C, Choi W (2011) Application of carbon nanostructures – energy to electronics. JOM 63:70

    Google Scholar 

  235. Leroux F, Metenier K, Gautier S, Frackowiak E, Bonnamy S, Beguin F (1999) Electrochemical insertion of lithium in catalytic multi-walled carbon nano-tubes. J Power Sources 81:317–322

    Google Scholar 

  236. Claye AS, Fischer JE, Huffman CB, Rinzler AG, Smalley RE (2000) Solid-state electrochemistry of the Li single wall carbon nanotube system. J Electrochem Soc 147:2845–2852

    Google Scholar 

  237. Sato M, Noguchi A, Demachi N, Oki N, Endo M (1994) A mechanism of lithium storage in disordered carbons. Science 264:556–558

    Google Scholar 

  238. Endo M, Kim YA, Hayashi T, Nishimura K, Matsushita T, Miyashita K, Dresselhaus MS (2001) Vapor-grown carbon fibers (VGCFs) basic properties and battery application. Carbon 39:1287–1297

    Google Scholar 

  239. An KH, Kim WS, Park YS, Moon JM, Bae DJ, Lim SC, Lee YS, Lee YH (2001) Electrochemical properties of high-power supercapacitors using single-walled carbon nanotube electrodes. Adv Funct Mater 11:387–392

    Google Scholar 

  240. Matsumoto T, Komatsu T, Arai K, Yamazaki T, Kijima M, Shimizu H, Takasawab Y, Nakamura J (2004) Reduction of Pt usage in fuel cell electrocatalysts with carbon nanotube electrodes. Chem Commun 2004:840–841

    Google Scholar 

  241. Goff AL, Artero V, Jousselme B, Tran PD, Guillet N, Métayé R, Fihri A, Palacin S, Fontecave M (2009) From hydrogenases to noble metal -free catalytic nanomaterials for H2 production and uptake. Science 326:1384–1387

    Google Scholar 

  242. Lee JM, Park JS, Lee SH, Kim H, Yoo S, Kim SO (2011) Selective electron-or hole-transport enhancement in bulk-heterojunction organic solar cells with N-or B-doped carbon nanotubes. Adv Mater 23:629

    Google Scholar 

  243. Xu ZH, Wu Y, Hu B, Ivanov IN, Geohegan DB (2005) Carbon nanotubes effects on electroluminescence and photovoltaic response in conjugated polymers. Appl Phys Lett 87:263118

    Google Scholar 

  244. Gabor NM, Zhong Z, Bosnick K, Park J, McEuen PL (2009) Extremely efficient multiple electron – hole pair generation in carbon nanotube photodiodes. Science 325:1367

    Google Scholar 

  245. Kam NWS, Jessop TC, Wender PA, Dai HJ (2004) Nanotube molecular transporters: internalization of car bon nanotube-protein conjugates into mammalian cells. J Am Chem Soc 126:6850–6851

    Google Scholar 

  246. Bianco A, Kostarelos K, Partido CD, Prato M (2005) Biomedical applications of functionalised carbon nanotubes. Chem Commun 5:571–577

    Google Scholar 

  247. Kam NWS, O’Connell M, Wisdom JA, Dai H (2005) Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc Natl Acad Sci USA 102:11600–11605

    Google Scholar 

  248. Zerda ADL, Zavaleta C, Keren S, Vaithilingam S, Bodapati S, Liu Z, Levi J, Ma T-J, Oralkan O, Cheng Z (2008) Photoacoustic molecular imaging in living mice utilizing targeted carbon nanotubes. Nat Nanotech 3:557–562

    Google Scholar 

  249. Welsher K, Liu Z, Daranciang D, Dai H (2008) Selective probing and imaging of cells with single walled carbon nanotubes as near-infrared fluorescent molecules. Nano Lett 8:586–590

    Google Scholar 

  250. Cherukuri P, Gannon CJ, Leeuw TK, Schmidt HK, Smalley RE, Curley SA, Weisman RB (2006) Mammalian pharmacokinetics of carbon nanotubes using intrinsic near-infrared fluorescence. Proc Natl Acad Sci USA 103:18882–18886

    Google Scholar 

  251. Heller DA, Baik S, Eurell TE, Strano MS (2005) Single-walled carbon nanotube spectroscopy in live cells: towards long-term labels and optical sensors. Adv Mater 17:2793–2799

    Google Scholar 

  252. Kam NWS, Liu Z, Dai HJ (2005) Functionalization of carbon nanotubes via cleavable disulfide bonds for efficient intracellular delivery of siRNA and potent gene silencing. J Am Chem Soc 127:12492–12493

    Google Scholar 

  253. Roy S, Vedala H, Prasad V, Choi W (2006) Vertically aligned multiwall carbon nanotube bioprobes on silicon platform for cholesterol detection. Nanotechnology 17:S14–S18

    Google Scholar 

  254. Hong SY, Tobias G, Jamal KTA, Ballesteros B, Boucetta HA, Perez SL, Nellist PD, Sim RB, Finucane C, Mather SJ, Green ML, Kostarelos K, Davis BG (2010) Filled and glycosylated carbon nanotubes for in vivo radioemitter localization and imaging. Nat Mater 9:485

    Google Scholar 

  255. Liu Z, Sun X, Ratchford NN, Dai H (2007) Supramolecular chemistry on water-soluble carbon nanotubes for drug loading and delivery. ACS Nano 1(1):50–56

    Google Scholar 

  256. Bianco A, Kostarelos K, Prato M (2011) Making carbon nanotubes biocompatible and biodegradable. Chem Commun 47:10182

    Google Scholar 

  257. Cai D, Mataraza JM, Qin ZH, Huang Z, Huang J, Chiles TC, Carnahan D, Kempa K, Ren Z (2005) Highly efficient molecular delivery into mammalian cells using carbon nanotube spearing. Nat Method 2:449–454

    Google Scholar 

  258. Roy S, Vedala H, Roy A, Kim D, Doud M, Mathee K, Shin H, Shimamoto N, Prasad V, Choi W (2008) Direct electrical measurements on single-molecule genomic DNA using single-walled carbon nanotubes. Nano Lett 8:26–30

    Google Scholar 

  259. Vedala H, Roy S, Doud M, Mathee K, Choi W (2008) The effect of environmental factors on the electrical conductivity of a single oligo-DNA molecule measured using single-walled carbon nanotube nanoelectrodes. Nanotechnology 19:265704

    Google Scholar 

  260. Meric I, Han MY, Young AF, Ozyilmaz B, Kim P, Shepard KL (2008) Current saturation in zero-bandgap, top-gated graphene field-effect transistors. Nat Nanotechnol 3:654–659

    Google Scholar 

  261. Barone V, Hod O, Scuseria GE (2006) Electronic structure and stability of semiconducting graphene nanoribbons. Nano Lett 6:2748

    Google Scholar 

  262. Liang GC, Neophytou N, Nikonov DE, Lund-strom MS (2007) Performance projections for ballistic graphene nanoribbon field-effect transistors. IEEE Trans Electron Dev 54:677

    Google Scholar 

  263. Chen Z, Lin YM, Rooks MJ, Avouris P (2007) Graphene nano-ribbon electronics. Physica E 40:228

    Google Scholar 

  264. Obradovic B, Kotlyar R, Heinz F, Matagne P, Rakshit T, Giles MD, Stettler MA (2006) Analysis of graphene nanoribbons as a channel material for field-effect transistors. Appl Phys Lett 88:142102

    Google Scholar 

  265. Ohta T, Bostwick A, Seyller T, Horn K, Rotenberg E (2006) Controlling the electronic structure of bilayer graphene. Science 313:951

    Google Scholar 

  266. Bai J, Duan X, Huang Y (2009) Rational fabrication of graphene nanoribbons using a nanowire etch mask. Nanoletters 9:2083

    Google Scholar 

  267. Tseng F, Unluer D, Holcomb K, Stan MR, Ghosh AW (2009) Diluted chirality dependence in edge rough graphene nanoribbons field-effect transistors. Appl Phys Lett 94:223112

    Google Scholar 

  268. Farmer DB, Mojarad RG, Perebeinos V, Lin YM, Tulevski GS, Tsang JC, Avouris P (2009) Chemical doping and electron–hole conduction asymmetry in graphene devices. Nanoletters 9:388

    Google Scholar 

  269. Ouyang Y, Wang X, Dai H, Guo J (2008) Carrier scattering in graphene nanoribbon field-effect transistors. Appl Phys Lett 92:243124

    Google Scholar 

  270. Ryzhii V, Ryzhii M, Otsuji T (2008) Thermionic and tunneling transport mechanisms in graphene field-effect transistors. Phys Stat Sol (a) 205(1527)

    Google Scholar 

  271. Ryzhii V, Ryzhii M, Satou A, Otsuji T (2008) Current–voltage characteristics of a graphene-nanoribbon field-effect transistor. J Appl Phys 103:094510

    Google Scholar 

  272. Wang X, Zhi L, Mullen K (2008) Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nanoletters 8:323

    Google Scholar 

  273. Han T-H, Lee Y, Choi MR, Woo SH, Bae SH, Hong BH, Ahn JH, Lee TW (2012) Extremely efficient flexible organic light emitting diodes with modified graphene anode. Nat Photonics 6:105–110

    Google Scholar 

  274. Gomez DAL, Zhang Y, Schlenker CW, Ryu K, Thompson ME, Zhou C (2010) Continuous, highly flexible, and transparent graphene films by chemical vapor deposition for organic photovoltaics. ACS Nano 4:2865

    Google Scholar 

  275. Li S, Tu KH, Lin CC, Chen CW, Chhowalla M (2010) Solution-process-able graphene oxide as an efficient hole transport layer in polymer solar cells. ACS Nano 4:3169

    Google Scholar 

  276. Liao L, Lin Y-C, Duan X (2010) High speed graphene transistors with a self-aligned nanowire gate. Nature 467:305

    Google Scholar 

  277. Moon JS, Curtis D, Hu M, Wong D, McGuire C, Campbell PM, Jernigan G, Tedesco JL, VanMil B, Myers-Ward R, Eddy C Jr, Gaskill DK (2009) Epitaxial-graphene RF field-effect transistors on Si-face 6H-SiC substrates. IEEE Electron Device Lett 30:650–652

    Google Scholar 

  278. Lin Y-M, Dimitrakopoulos C, Jenkins KA, Farmer DB, Chiu H-Y, Grill A, Avouris P (2010) 100-GHz transistors from wafer-scale epitaxial graphene. Science 327:662

    Google Scholar 

  279. Szafranek BN, Fiori G, Schall D, Neumaier D, Kurz H (2012) Current saturation and voltage gain in bilayer graphene field effect transistors. Nano Lett 12:1324

    Google Scholar 

  280. Rangel NL, Gimenez A, Sinitskii A, Seminario JM (2011) Graphene signal mixer for sensing applications. J Phys Chem C 115(24):12128–12134

    Google Scholar 

  281. Wang H, Nezich D, Kong J, Palacios T (2009) Graphene frequency multipliers. IEEE Electron Device Lett 30:547–549

    Google Scholar 

  282. Wang Z, Zhang Z, Xu H, Ding L, Wang S, Peng L-M (2010) A high-performance top-gate graphene field-effect transistor based frequency doubler. Appl Phys Lett 96:173104

    Google Scholar 

  283. Milaninia KM, Baldo MA, Reina A, Kong J (2009) All graphene electromechanical switch fabricated by chemical vapor deposition. Appl Phys Lett 95:183105

    Google Scholar 

  284. Schedin F, Geim AK, Morozov SV, Hill EW, Blake P, Katsnelson MI, Novoselov KS (2007) Detection of individual gas molecules adsorbed on graphene. Nat Mater 6:652

    Google Scholar 

  285. Fowler JD, Allen MJ, Tung VC, Yang Y, Kaner RB, Weiller BH (2009) Practical chemical sensors from chemically derived graphene. ACS Nano 3:201

    Google Scholar 

  286. Sundaram RS, Navarro CG, Balasubramaniam K, Burghard M, Kern K (2008) Electrochemical modification of graphene. Adv Mater 20:3050

    Google Scholar 

  287. Lu J, Do I, Drzal LT, Worden RM, Lee I (2008) Nanometal-decorated exfoliated graphite nanoplatelet based glucose biosensors with high sensitivity and fast response. ACS Nano 2:1825–1832

    Google Scholar 

  288. Huang B, Li Z, Liu Z, Zhou G, Hao S, Wu J, Gu B-L, Duan W (2008) Adsorption of gas molecules on graphene nanoribbons and its implication for nanoscale molecule sensor. J Phys Chem C 112:13442–13446

    Google Scholar 

  289. Shan C, Yang H, Song J, Han D, Ivaska A, Niu L (2009) Direct electrochemistry of glucose oxidase and biosensing for glucose based on graphene. Anal Chem 81:2378

    Google Scholar 

  290. Alwarappan S, Erdem A, Liu C, Li CZ (2009) Probing the electrochemical properties of graphene nanosheets for biosensing applications. J Phys Chem C 113:8853

    Google Scholar 

  291. Li J, Guo S, Zhai Y, Wang E (2009) Nafion–graphene nanocomposite film as enhanced sensing platform for ultrasensitive de-termination of cadmium. Electrochem Commun 11(1085)

    Google Scholar 

  292. Bae S-H, Lee Y, Sharma BK, Lee HJ, Kim J-H, Ahn J-H (2013) Graphene-based transparent strain sensor. Carbon 51:236–242

    Google Scholar 

  293. Lee Y, Bae S, Jang H, Jang S, Zhu S-E, Sim SH, Song Y, Hong BH, Ahn J-H (2010) Wafer-scale synthesis and transfer of graphene films. Nano Lett 10(2):490–493

    Google Scholar 

  294. Fu X-W, Liao Z-M, Zhou JX, Zhou YB, Wu HC, Zhang R (2011) Strain dependent resistance in chemical vapor deposition grown graphene. Appl Phys Lett 99(21):213107

    Google Scholar 

  295. Wang Y, Yang R, Shi Z, Zhang L, Shi D, Wang E, Zhang G (2011) Super-elastic graphene ripples for flexible strain sensors. ACS Nano 5(5):3645–3650

    Google Scholar 

  296. Smith AD, Niklaus F, Paussa A, Vaziri S, Fischer AC, Sterner M, Forsberg F, Delin A, Esseni D, Palestri P, Palestri P, Palestri P, Ostling M, Lemme MC (2013) Electromechanical piezoresistive sensing in suspended graphene membranes. Nano Lett 13:3237–3242

    Google Scholar 

  297. Hierold C, Jungen A, Stampfer C, Helbling T (2007) Nano electromechanical sensors based on carbon nanotubes. Sens Actuators A 136(1):51–61

    Google Scholar 

  298. Kalvesten E, Smith L, Tenerz L, Stemme G (1998) The first surface micromachined pressure sensor for cardiovascular pressure measurements. In Proceedings 11th Annu. Int. Workshop on Micro Electro Mech Syst 574–579

    Google Scholar 

  299. Lee SW, Lee SS, Yang EH (2009) A study on field emission characteristics of planar graphene layers obtained from a highly oriented pyrolyzed graphite block. Nanoscale Res Lett 4:1218–1221

    Google Scholar 

  300. Koh ATT, Foong YM, Pan L, Sun Z, Chua DHC (2012) Effective large-area free-standing graphene field emitters by electrophoretic deposition. Appl Phys Lett 101:183107

    Google Scholar 

  301. Malesevic A, Kemps R, Vanhulsel A, Chowdhury MP, Volodin A, Haesendonck CV (2008) Field emission from vertically aligned few-layer graphene. J Appl Phys 104:084301

    Google Scholar 

  302. Geim AK, Kim P (2008) Carbon wonderland. Sci Am 298:90

    Google Scholar 

  303. Eda G, Unalan HE, Rupesinghe N, Amartunga GAJ, Chhowalla M (2008) Field emission from graphene based composite films. Appl Phys Lett 93:233502

    Google Scholar 

  304. Wu ZS, Pei S, Ren W, Tang D, Gao L, Liu B, Li F, Liu C, Cheng HM (2009) Field emission from single layer graphene films prepared by electrophoretic deposition. Adv Mater 21:1756

    Google Scholar 

  305. Lahiri I, Verma VP, Choi W (2011) An all-graphene based transparent and flexible field emission device. Carbon 49(5):1614–1619

    Google Scholar 

  306. Watcharotone S, Ruoff RS, Read FH (2008) Possibilities for graphene for field emission: modeling studies using the BEM. Phys Procedia 1:71

    Google Scholar 

  307. Babenko AY, Dideykin AT, Eidelman ED (2009) Graphene ladder: a model of field emission center on the surface of loose nanocarbon materials. Phys Solid State 51:435

    Google Scholar 

  308. Yoo E, Kim J, Hosono E, Zhou H, Kudo T, Honma I (2008) Large reversible li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano Lett 8:2277

    Google Scholar 

  309. Xiang HF, Li ZD, Xie K, Jiang JZ, Chen JJ, Lian PC, Wu JS, Yud Y, Wang HH (2012) Graphene sheets as anode materials for Li-ion batteries: preparation, structure, electrochemical properties and mechanism for lithium storage. RSC Adv 2:6792–6799

    Google Scholar 

  310. Paek S-M, Yoo EJ, Honma I (2009) Enhanced cyclic performance and lithium storage capacity of SnO2/graphene nanoporous electrodes with three dimensionally delaminated flexible structure. Nano Lett 9:72

    Google Scholar 

  311. Wang D, Choi D, Li J, Yang Z, Nie Z, Kou R, Hu D, Wang C, Saraf LV, Zhang J, Aksay IA, Jiu J (2009) Self-assembled TiO2-graphene hybrid nanostructures for enhanced Li-ion insertion. ACS Nano 3:907

    Google Scholar 

  312. Xie J, Song W, Zheng Y, Liu S, Zhu T, Cao G, Zhao X (2011) Preparation and Li-storage properties of SnSb/graphene hybrid nanostructure by a facile one-step solvothermal route. Int J Smart Nano Mat 2(4):261–271

    Google Scholar 

  313. Xiao JD, Mei D, Li X, Xu W, Wang D, Graff GL, Bennett WD, Nie Z, Saraf LV, Aksay IA, Liu J, Zhang JG (2011) Hierarchically porous graphene as a lithium-air battery electrode. Nano Lett 11(11):5071–5078

    Google Scholar 

  314. Xu C, Wang X, Zhu J (2008) Graphene-metal particle nanocomposites. J Phys Chem C 112:19841–19845

    Google Scholar 

  315. Seger B, Kamat PV (2009) Electrocatalytically active graphene-platinum nanocomposites. Role of 2-D carbon support in PEM fuel cells. J Phys Chem C 113:7990–7995

    Google Scholar 

  316. Kou R, Shao YY, Wang DH, Engelhard MH, Kwak JH, Wang J, Viswanathan VV, Wang CM, Lin YH, Wang Y, Aksay IA, Liu J (2009) Enhanced activity and stability of Pt catalysts on functionalized graphene sheets for electrocatalytic oxygen reduction. Electrochem Commun 11:954

    Google Scholar 

  317. Jafri RI, Rajalakshmi N, Ramaprabhu S (2010) Nitrogen doped graphene nanoplatelets as catalyst support for oxygen reduction reaction in proton exchange membrane fuel cell. J Mater Chem 20:7114

    Google Scholar 

  318. Wu J, Becerril HA, Bao Z, Liu Z, Chen Y, Peumans P (2008) Organic solar cells with solution-processed graphene transparent electrodes. Appl Phys Lett 92:263302–263304

    Google Scholar 

  319. Eda G, Lin YY, Miller S, Chen CW, Su WF, Chhowalla M (2008) Transparent and conducting electrodes for organic electronics from reduced graphene oxide. Appl Phys Lett 92:233305–233307

    Google Scholar 

  320. Hong W, Xu Y, Lu G, Li C, Shi G (2008) Transparent graphene/PEDOT-PSS composite films as counter electrodes of dye-sensitized solar cells. Electrochem Comm 10:1555–1558

    Google Scholar 

  321. Li X, Zhu H, Wang K, Cao A, Wei J, Li C, Jia Y, Li Z, Li X, Wu D (2010) Graphene-on-silicon schottky junction solar cells. Adv Mater 22:2743–2748

    Google Scholar 

  322. Ye Y, Dai Y, Dai L, Shi Z, Liu N, Wang F, Fu L, Peng R, Wen X, Chen Z, Liu Z, Qin G (2010) High-oerformance single CdS nanowire (nanobelt) schottky junction solar cells with Au/Graphene Schottky electrodes. ACS Appl Mater Interfaces 2:3406–3410

    Google Scholar 

  323. Gratzel M (2001) Photoelectrochemical cells. Nature 414:338–344

    Google Scholar 

  324. Grätzel M (2004) Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells. J Photochem Photobiol A Chem 164:3–14

    Google Scholar 

  325. Trancik JE, Barton SC, Hone J (2008) Transparent and catalytic carbon nanotube films. Nano Lett 8:982–987

    Google Scholar 

  326. Li GR, Wang F, Jiang QW, Gao XP, Shen PW (2010) Carbon nanotubes with titanium nitride as a low-cost counter-electrode material for dye-sensitized solar cells. Angew Chem Int Ed 49:3653–3656

    Google Scholar 

  327. Das S, Sudhagar P, Verma V, Song D, Ito E, Lee SY, Kang YS, Choi W (2011) Amplifying charge-transfer characteristics of graphene for triiodide reduction in dye-sensitized solar cells. Adv Funct Mater 21:3729–3736

    Google Scholar 

  328. Das S, Sudhagar P, Nagarajan S, Ito E, Lee SY, Kang YS, Choi W (2012) Synthesis of graphene-CoS electro-catalytic electrodes for dye sensitized solar cells. Carbon 50:4815–4821

    Google Scholar 

  329. Das S, Sudhagar P, Ito E, Lee DY, Nagarajan S, Lee SY, Kang YS, Choi W (2012) Effect of HNO3 functionalization on large scale graphene for enhanced tri-iodide reduction in dye-sensitized solar cells. J Mater Chem 22:20490–20497

    Google Scholar 

  330. Li D, Müller MB, Gilje S, Kaner RB, Wallace GG (2008) Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol 3:101

    Google Scholar 

  331. Sofo JO, Chaudhari AS, Barber GD (2007) Graphane: a two dimensional hydrocarbon. Phys Rev B 75:153401

    Google Scholar 

  332. U.S. Department of Energy. Energy efficiency and renewable energy. http://www1.eere.energy.gov/hydrogenandfuelcells/storage/current_technology.html

  333. Ao ZM, Peeters FM (2010) High-capacity hydrogen storage in Al-adsorbed graphene. Phys Rev B 81:205406

    Google Scholar 

  334. Beheshti E, Nojeh A, Servati PA (2011) A first-principles study of calcium-decorated, boron-doped graphene for high capacity hydrogen storage. Carbon 49:1561–1567

    Google Scholar 

  335. Balog R, Jørgensen B, Wells J, Lægsgaard E, Hofmann P, Besenbacher F, Hornekær L (2009) Atomic hydrogen adsorbate structures on graphene. J Am Chem Soc 131:8744–8745

    Google Scholar 

  336. Goler S, Coletti C, Tozzini V, Piazza V, Mashoff T, Beltram F, Pellegrini V, Heun S (2013) Influence of graphene curvature on hydrogen adsorption: toward hydrogen storage devices. J Phys Chem C 117:11506–11513

    Google Scholar 

  337. Tozzini V, Pellegrini V (2011) Reversible hydrogen storage by controlled Buckling of graphene layers. J Phys Chem C 115:25523–25528

    Google Scholar 

  338. Boukhvalov DW, Katsnelson MI (2009) Enhancement of chemical activity in corrugated graphene. J Phys Chem C 113:14176–14178

    Google Scholar 

  339. Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Graphene-based composite materials. Nature 442:282

    Google Scholar 

  340. Dreyer DR, Park S, Bielawski CW, Ruoff RS (2010) The chemistry of graphene oxide. Chem Soc Rev 39:228–240

    Google Scholar 

  341. Chen T, Zeng B, Liu JL, Dong JH, Liu XQ, Wu Z, Yang XZ, Li ZM (2009) High throughput exfoliation of graphene oxide from expanded graphite with assistance of strong oxidant in modified Hummers method. J Phys: Conf Ser 188:012051

    Google Scholar 

  342. Zhou X, Huang X, Qi X, Wu S, Xue C, Boey FYC, Yan Q, Chen P, Zhang H (2009) In situ synthesis of metal nanoparticles on single-layer graphene oxide and reduced graphene oxide surfaces. J Phys Chem C 113:10842

    Google Scholar 

  343. Liu J, Bai H, Wang Y, Liu Z, Zhang X, Sun DD (2010) Self-assembling TiO2 nanorods on large graphene oxide sheets at a two-phase interface and their anti-recombination in photocatalytic applications. Adv Funct Mater 20:4175–4181

    Google Scholar 

  344. Shen J, Hu Y, Shi M, Li N, Ma H, Ye M (2010) One step synthesis of graphene oxide – magnetic nanoparticle composite. J Phys Chem C 114:1498–1503

    Google Scholar 

  345. Zhou H, Qiu C, Liu Z, Yang H, Hu L, Liu J, Yang H, Gu C, Sun L (2010) Thickness-dependent morphologies of gold on N-layer graphenes. J Am Chem Soc 132:944–946

    Google Scholar 

  346. Yu K, Lu G, Mao S, Chen K, Kim H, Wen Z, Chen J (2011) Selective deposition of CdSe nanoparticles on reduced graphene oxide to understand photoinduced charge transfer in hybrid nanostructures. ACS Appl Mater Interfaces 3:2703–2709

    Google Scholar 

  347. Meng X, Geng D, Liu J, Banis MN, Zhang Y, Li R, Sun X (2010) Non-aqueous approach to synthesize amorphous/crystalline metal oxide-graphene nanosheet hybrid composites. J Phys Chem C 114:18330–18337

    Google Scholar 

  348. Wang H, Cui L-F, Yang Y, Casalongue HS, Robinson JT, Liang Y, Cui Y, Dai H (2010) Mn3O4 – graphene hybrid as a high-capacity anode material for lithium Ion batteries. J Am Chem Soc 132:13978–13980

    Google Scholar 

  349. Yang S, Feng X, Ivanovici S, Mullen K (2010) Fabrication of graphene-encapsulated oxide nanoparticles: towards high-performance anode materials for lithium storage. Angew Chem Int Ed 49:8408–8411

    Google Scholar 

  350. Wang D, Kou R, Choi D, Yang Z, Nie Z, Li J, Saraf LV, Hu D, Zhang J, Graff GL, Liu J, Pope MA, Aksay IA (2010) Ternary self-assembly of ordered metal oxide – graphene nanocomposites for electrochemical energy storage. ACS Nano 4:1587–1595

    Google Scholar 

  351. Wu Q, Xu Y, Yao Z, Liu A, Shi G (2010) Supercapacitors based on flexible graphene/polyaniline nanofiber composite films. ACS Nano 4:1963–1970

    Google Scholar 

  352. Dong L, Gari RRS, Li Z, Craig MM, Hou S (2010) Graphene-supported platinum and platinum–ruthenium nanoparticles with high electrocatalytic activity for methanol and ethanol oxidation. Carbon 48:781–787

    Google Scholar 

  353. Zhang L-S, Liang X-Q, Song W-G, Wu Z-Y (2010) Identification of the nitrogen species on N-doped graphene layers and Pt/NG composite catalyst for direct methanol fuel cell. Phys Chem Chem Phys 12:12055–12059

    Google Scholar 

  354. Yu D, Yang Y, Durstock M, Baek J-B, Dai L (2010) Soluble P3HT-grafted graphene for efficient bilayer – heterojunction photovoltaic devices. ACS Nano 4:5633–5640

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wonbong Choi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Choudhary, N., Hwang, S., Choi, W. (2014). Carbon Nanomaterials: A Review. In: Bhushan, B., Luo, D., Schricker, S., Sigmund, W., Zauscher, S. (eds) Handbook of Nanomaterials Properties. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31107-9_37

Download citation

Publish with us

Policies and ethics