Skip to main content

Handbook of Nanomaterials Properties: Siliceous Nanobiomaterials

  • Chapter
  • First Online:
Handbook of Nanomaterials Properties

Abstract

In the scope of silica materials across the breadth of research and technology, perhaps one of the most active and exciting research areas is that of siliceous nanobiomaterials – materials forged at the interface of silica and biomaterials that give rise to and augment a multitude of biotechnological applications. In the development of these hybrid silica nanomaterials, taking cues from both the short term in early silica research to the long term in nature itself, the main rationale for the application of silica has been to enhance functionality through the adaptation and exploitation of properties inherent to silica materials and chemistry. In fact, siliceous nanobiomaterials are not a human creation: Silica interactions with cells and other biological entities are ancient and ubiquitous. Stromatolites, Earth’s earliest fossils, consist of bacteria within silica-containing mineral matrices as an early example of biomineralization. Even today diatoms and radiolarian sponges employ silica shells for protection. Incorporation of siliceous components within nanobiomaterials has mainly been motivated by properties and attributes of silica that have made it a valuable research tool for decades. Silica is readily formed by hydrolysis and condensation of simple silicate precursors (e.g., tetramethyl orthosilicate, TMOS, and tetraethyl orthosilicate, TEOS, are the most common). In addition, silica materials can be tuned in size, porosity, and pore size by controlling reaction rates and chemistries. Silica also provides good mechanical strength while being compatible for biological applications. Lastly, silica and its precursors are relatively inexpensive materials and provide for ease of production and scale-up.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 629.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 799.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tanaka S, Nishiyama N, Oku Y, Egashira Y, Ueyama K (2004) Nano-architectural silica thin films with two-dimensionally connected cage-like pores synthesized from vapor phase. J Am Chem Soc 126(15):4854–4858

    Google Scholar 

  2. Kneuer C, Sameti M, Bakowsky U, Schiestel T, Schirra H, Schmidt H, Lehr CM (2000) A nonviral DNA delivery system based on surface modified silica-nanoparticles can efficiently transfect cells in vitro. Bioconjug Chem 11:926–932

    Google Scholar 

  3. Slowing II, Trewyn BG, Giri S, Lin VS-Y (2007) Mesoporous silica nanoparticles for drug delivery and biosensing applications. Adv Funct Mater 17:1225–1236

    Google Scholar 

  4. Wang L, Wang K, Santra S, Zhao X, Hilliard LR, Smith JE, Wu Y, Tan W (2006) Watching silica nanoparticles glow in the biological world. Anal Chem 78:646–654

    Google Scholar 

  5. Guerrero-Martínez A, Pérez-Juste J, Liz-Marzán LM (2010) Recent progress on silica coating of nanoparticles and related nanomaterials. Adv Mater (Deerfield Beach, Fla) 22:1182–1195

    Google Scholar 

  6. Bagwe RP, Yang C, Hilliard LR, Tan W (2004) Optimization of dye-doped silica nanoparticles prepared using a reverse microemulsion method. Langmuir: ACS J Surf Colloids 20:8336–8342

    Google Scholar 

  7. Santra S, Yang H, Dutta D, Stanley JT, Holloway PH, Tan W, Moudgil BM, Mericle RA (2004) TAT conjugated, FITC doped silica nanoparticles for bioimaging applications. Chem Commun (Camb) 21:2810–2811

    Google Scholar 

  8. Zheng M, Davidson F, Huang X (2003) Ethylene glycol monolayer protected nanoparticles for eliminating nonspecific binding with biological molecules. J Am Chem Soc 125:7790–7791

    Google Scholar 

  9. Lin P-C, Chou P-H, Chen S-H, Liao H-K, Wang K-Y, Chen Y-J, Lin C-C (2006) Ethylene glycol-protected magnetic nanoparticles for a multiplexed immunoassay in human plasma. Small (Weinheim an der Bergstrasse, Germany) 2:485–489

    Google Scholar 

  10. Bagwe RP, Hilliard LR, Tan W (2006) Surface modification of silica nanoparticles to reduce aggregation and nonspecific binding. Langmuir: ACS J Surf Colloids 22:4357–4362

    Google Scholar 

  11. Wu H, Huo Q, Varnum S, Wang J, Liu G, Nie Z, Liu J, Lin Y (2008) Dye-doped silica nanoparticle labels/protein microarray for detection of protein biomarkers. Analyst 133:1550–1555

    Google Scholar 

  12. Hiramatsu H, Osterloh FE (2003) pH-controlled assembly and disassembly of electrostatically linked CdSe–SiO2 and Au–SiO2 nanoparticle clusters. Langmuir 19(17):7003–7011

    Google Scholar 

  13. Zhao X, Kopelman R (1996) Mechanism of organosilane self-assembled monolayer formation on silica studied by second-harmonic generation. J Phys Chem 100:11014–11018

    Google Scholar 

  14. Avnir D, Coradin T, Lev O, Livage J (2006) Recent bio-applications of sol–gel materials. J Mater Chem 16(11):1013–1030

    Google Scholar 

  15. Chang K-C, Lin C-Y, Lin H-F, Chiou S-C, Huang W-C, Yeh J-M, Yang J-C (2008) Thermally and mechanically enhanced epoxy resin-silica hybrid materials containing primary amine-modified silica nanoparticles. J Appl Polym Sci 108:1629–1635

    Google Scholar 

  16. Patel K, Angelos S, Dichtel WR, Coskun A, Yang Y-W, Zink JI, Stoddart JF (2008) Enzyme-responsive snap-top covered silica nanocontainers. J Am Chem Soc 130:2382–2383

    Google Scholar 

  17. Hilliard LR, Zhao X, Tan W (2002) Immobilization of oligonucleotides onto silica nanoparticles for DNA hybridization studies. Anal Chim Acta 470:51–56

    Google Scholar 

  18. Hall SR, Davis SA, Mann S (2000) Cocodensation of organosilica hybrid shells on nanoparticle templates: A direct synthetic route to functionalized core-shell colloids. Langmuir 16(3):1454–1456

    Google Scholar 

  19. Tsukagoshi T, Kondo Y, Yoshino N (2007) Protein adsorption on polymer-modified silica particle surface. Colloids Surf B Biointerfaces 54:101–107

    Google Scholar 

  20. Wang L, Lofton C, Popp M, Tan W (2007) Using luminescent nanoparticles as staining probes for Affymetrix GeneChips. Bioconjug Chem 18(3):610–613

    Google Scholar 

  21. Wang L-S, Wu L-C, Lu S-Y, Chang L-L, Teng I-T, Yang C-M, Ho J-AA (2010) Biofunctionalized phospholipid-capped mesoporous silica nanoshuttles for targeted drug delivery: improved water suspensibility and decreased nonspecific protein binding. ACS Nano 4:4371–4379

    Google Scholar 

  22. Rapuano R, Carmona-Ribeiro AM (2000) Supported bilayers on silica. J Colloid Interface Sci 226:299–307

    Google Scholar 

  23. Moura SP, Carmona-Ribeiro AM (2005) Biomimetic particles: optimization of phospholipid bilayer coverage on silica and colloid stabilization. Langmuir: ACS J Surf Colloids 21:10160–10164

    Google Scholar 

  24. Keller SW, Johnson SA, Brigham ES, Yonemoto EH, Mallouk TE (1995) Photoinduced charge separation in multilayer thin films grown by sequential adsorption of polyelectrolytes. J Am Chem Soc 117(51):12879–12880

    Google Scholar 

  25. Taniguchi K, Nomura K, Hata Y, Nishimura T (2007) The Si-tag for immobilizing proteins on a silica surface. Biotechnol Bioeng 96:1023–1029

    Google Scholar 

  26. Oldenburg SJ, Averitt RD, Westcott SL, Halas NJ (1998) Nanoengineering of optical resonances. Chem Phys Lett 288:243–247

    Google Scholar 

  27. Taylor KML, Kim JS, Rieter WJ, An H, Lin W, Lin W (2008) Mesoporous silica nanospheres as highly efficient MRI contrast agents. J Am Chem Soc 130:2154–2155

    Google Scholar 

  28. Zhou X, Zhou J (2004) Improving the signal sensitivity and photostability of DNA hybridizations on microarrays by using dye-doped core-shell silica nanoparticles. Anal Chem 76:5302–5312

    Google Scholar 

  29. Zhao X, Tapec-Dytioco R, Tan W (2003) Ultrasensitive DNA detection using highly fluorescent bioconjugated nanoparticles. J Am Chem Soc 125:11474–11475

    Google Scholar 

  30. Wang J, Liu G, Wu H, Lin Y (2008) Sensitive electrochemical immunoassay for 2,4,6-trinitrotoluene based on functionalized silica nanoparticle labels. Anal Chim Acta 610:112–118

    Google Scholar 

  31. Zhong Z, Li M, Xiang D, Dai N, Qing Y, Wang D, Tang D (2009) Signal amplification of electrochemical immunosensor for the detection of human serum IgG using double-codified nanosilica particles as labels. Biosens Bioelectron 24:2246–2249

    Google Scholar 

  32. Coradin T, Allouche J, Boissière M, Livage J (2006) Sol–gel biopolymer/silica nanocomposites in biotechnology. Curr Nanosci 2:219–230

    Google Scholar 

  33. Coradin T, Boissière M, Livage J (2006) Sol–gel chemistry in medicinal science. Curr Med Chem 13:99–108

    Google Scholar 

  34. Wang G-H, Zhang L-M (2006) Using novel polysaccharide-silica hybrid material to construct an amperometric biosensor for hydrogen peroxide. J Phys Chem B 110:24864–24868

    Google Scholar 

  35. Tapec R, Zhao XJ, Tan W (2002) Development of organic dye-doped silica nanoparticles for bioanalysis and biosensors. J Nanosci Nanotechnol 2:405–409

    Google Scholar 

  36. Luo D, Saltzman WM (2005) Nonviral gene delivery: thinking of silica. Gene Ther 13:585–586

    Google Scholar 

  37. Torney F, Trewyn BG, Lin VS-Y, Wang K (2007) Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat Nanotechnol 2:295–300

    Google Scholar 

  38. Ravi Kumar MNV, Sameti M, Mohapatra SS, Kong X, Lockey RF, Bakowsky U, Lindenblatt G, Schmidt H, Lehr CM (2004) Cationic silica nanoparticles as gene carriers: synthesis, characterization and transfection efficiency in vitro and in vivo. J Nanosci Nanotechnol 4:876–881

    Google Scholar 

  39. Giri S, Trewyn BG, Lin VSY (2007) Mesoporous silica nanomaterial-based biotechnological and biomedical delivery systems. Nanomedicine (Lond) 2:99–111

    Google Scholar 

  40. Rathbone MJ, Hadgraft J, Roberts MS (2003) Modified-release drug delivery technology. In: Rathbone MJ, Hadgraft J, Roberts MS (eds), Drugs and the Pharmaceutical Sciences, vol 126, Marcel Dekker, Inc

    Google Scholar 

  41. Schroder H, Wang X, Tremel W, Ushijima H, Muller W (2008) Biofabrication of biosilica-glass by living organisms. Nat Prod Rep 25(3):455–474

    Google Scholar 

  42. Hildebrand M (2008) Diatoms, biomineralization processes, and genomics. Chem Rev 108(11):4855–4874

    Google Scholar 

  43. Dickerson M, Sandhage K, Naik R (2008) Protein- and peptide-directed syntheses of inorganic materials. Chem Rev 108(11):4935–4978

    Google Scholar 

  44. Patwardhan S (2011) Biomimetic and bioinspired silica: recent developments and applications. Chem Commun 47(27):7567–7582

    Google Scholar 

  45. Patwardhan S, Clarson S (2002) Silicification and biosilicification. Silicon Chem 1(3):207–214

    Google Scholar 

  46. Kröger N, Deutzmann R, Sumper M (1999) Polycationic peptides from diatom biosilica that direct silica nanosphere formation. Science 286(5442):1129–1132

    Google Scholar 

  47. Shimizu K, Cha J, Stucky G, Morse D (1998) Silicatein α: cathepsin L-like protein in sponge biosilica. Proc Natl Acad Sci USA 95(11):6234–6238

    Google Scholar 

  48. Wenzl S, Hett R, Richthammer P, Sumper M (2008) Silacidins: highly acidic phosphopeptides from diatom shells assist in silica precipitation in vitro. Angew Chem 120(9):1753–1756

    Google Scholar 

  49. Kröger N, Lorenz S, Brunner E, Sumper M (2002) Self-assembly of highly phosphorylated silaffins and their function in biosilica morphogenesis. Science 298(5593):584–586

    Google Scholar 

  50. Poulsen N, Sumper M, Kröger N (2003) Biosilica formation in diatoms: characterization of native silaffin-2 and its role in silica morphogenesis. Proc Natl Acad Sci USA 100(21):12075–12080

    Google Scholar 

  51. Poulsen N, Kröger N (2004) Silica morphogenesis by alternative processing of silaffins in the diatom Thalassiosira pseudonana. J Biol Chem 279(41):42993–42999

    Google Scholar 

  52. Luckarift H, Spain J, Naik R, Stone M (2004) Enzyme immobilization in a biomimetic silica support. Nat Biotechnol 22(2):211–213

    Google Scholar 

  53. Sano K-I, Minamisawa T, Shiba K (2010) Autonomous silica encapsulation and sustained release of anticancer protein. Langmuir 26(4):2231–2234

    Google Scholar 

  54. Marner WD, Shaikh AS, Muller SJ, Keasling JD (2009) Enzyme immobilization via silaffin-mediated autoencapsulation in a biosilica support. Biotechnol Prog 25(2):417–423

    Google Scholar 

  55. Brott L, Naik R, Pikas D, Kirkpatrick S, Tomlin D, Whitlock P, Clarson S, Stone M (2001) Ultrafast holographic nanopatterning of biocatalytically formed silica. Nature 413(6853):291–293

    Google Scholar 

  56. Cha J, Shimizu K, Zhou Y, Christiansen S, Chmelka B, Stucky G, Morse D (1999) Silicatein filaments and subunits from a marine sponge direct the polymerization of silica and silicones in vitro. Proc Natl Acad Sci USA 96(2):361–365

    Google Scholar 

  57. Müller W, Boreiko A, Wang X, Belikov SI, Wiens M, Grebenjuk VA, Schloβmacher U, Schröder HC (2007) Silicateins, the major biosilica forming enzymes present in demosponges: protein analysis and phylogenetic relationship. Gene 395(1–2):62–71

    Google Scholar 

  58. Rai A, Perry C (2009) Facile fabrication of uniform silica films with tunable physical properties using silicatein protein from sponges. Langmuir 26(6):4152–4159

    Google Scholar 

  59. Müller W, Wang X, Jochum K, Schröder H (2013) Self-healing, an intrinsic property of biomineralization processes. IUBMB Life 65(5):382–396

    Google Scholar 

  60. Nagle JF, Tristram-Nagle S (2000) Structure of lipid bilayers. Biochim Et Biophys Acta 1469(3):159–195

    Google Scholar 

  61. Nagle JF, Zhang RT, TristramNagle S, Sun WJ, Petrache HI, Suter RM (1996) X-ray structure determination of fully hydrated L(alpha) phase dipalmitoylphosphatidylcholine bilayers. Biophys J 70(3):1419–1431

    Google Scholar 

  62. Lian T, Ho RJ (2001) Trends and developments in liposome drug delivery systems. J Pharm Sci 90(6):667–680

    Google Scholar 

  63. Allen TM, Cullis PR (2004) Drug delivery systems: entering the mainstream. Science 303(5665):1818–1822

    Google Scholar 

  64. Fielding RM (1991) Liposomal drug delivery. Clin Pharmacokinet 21(3):155–164

    Google Scholar 

  65. Drummond DC, Meyer O, Hong K, Kirpotin DB, Papahadjopoulos D (1999) Optimizing liposomes for delivery of chemotherapeutic agents to solid tumors. Pharmacol Rev 51(4):691–744

    Google Scholar 

  66. Ottenbacher D, Kindervater R, Gimmel P, Klee B, Jähnig F, Göpel W (1992) Developing biosensors with pH-ISFET transducers utilizing lipid bilayer membranes with transport proteins. Sens Actuators B 6(1):192–196

    Google Scholar 

  67. Bayley H, Braha O, Gu LQ (2000) Stochastic sensing with protein pores. Adv Mater 12(2):139–142

    Google Scholar 

  68. Nicolini C (1995) From neural chip and engineered biomolecules to bioelectronic devices: an overview. Biosens Bioelectron 10(1):105–127

    Google Scholar 

  69. Eleutheria EC, de Araujo PS, Panek AD (1993) Role of the trehalose carrier in dehydration resistance of Saccharomyces cerevisiae. Biochim Biophys Acta (BBA)-Gen Subj 1156(3):263–266

    Google Scholar 

  70. Albertorio F, Chapa VA, Chen X, Diaz AJ, Cremer PS (2007) The α, α-(1 → 1) linkage of trehalose is key to anhydrobiotic preservation. J Am Chem Soc 129(34):10567–10574

    Google Scholar 

  71. Richter RP, Brisson AR (2005) Following the formation of supported lipid bilayers on mica: a study combining AFM, QCM-D, and ellipsometry. Biophys J 88(5):3422–3433

    Google Scholar 

  72. Albertorio F, Diaz AJ, Yang T, Chapa VA, Kataoka S, Castellana ET, Cremer PS (2005) Fluid and air-stable lipopolymer membranes for biosensor applications. Langmuir 21(16):7476–7482

    Google Scholar 

  73. Kang X-f, Cheley S, Rice-Ficht AC, Bayley H (2007) A storable encapsulated bilayer chip containing a single protein nanopore. J Am Chem Soc 129(15):4701–4705

    Google Scholar 

  74. Yamanaka SA, Charych DH, Loy DA, Sasaki DY (1997) Solid phase immobilization of optically responsive liposomes in sol–gel materials for chemical and biological sensing. Langmuir 13(19):5049–5053

    Google Scholar 

  75. Nguyen T, McNamara KP, Rosenzweig Z (1999) Optochemical sensing by immobilizing fluorophore-encapsulating liposomes in sol–gel thin films. Anal Chim Acta 400(1):45–54

    Google Scholar 

  76. Besanger T, Zhang Y, Brennan JD (2002) Characterization of fluorescent phospholipid liposomes entrapped in sol–gel derived silica. J Phys Chem B 106(41):10535–10542

    Google Scholar 

  77. Keeling-Tucker T, Brennan JD (2001) Fluorescent probes as reporters on the local structure and dynamics in sol–gel-derived nanocomposite materials. Chem Mater 13(10):3331–3350

    Google Scholar 

  78. Luo T-JM, Soong R, Lan E, Dunn B, Montemagno C (2005) Photo-induced proton gradients and ATP biosynthesis produced by vesicles encapsulated in a silica matrix. Nat Mater 4(3):220–224

    Google Scholar 

  79. Gupta G, Atanassov P, Lopez GP (2006) Robust hybrid thin films that incorporate lamellar phospholipid bilayer assemblies and transmembrane proteins. Biointerphases 1(1):6–10

    Google Scholar 

  80. Gupta G, Rathod SB, Staggs KW, Ista LK, Oucherif KA, Atanassov PB, Tartis MS, Montano GA, Lopez GP (2009) CVD for the facile synthesis of hybrid nanobiomaterials integrating functional supramolecular assemblies. Langmuir 25(23):13322–13327

    Google Scholar 

  81. Gupta G, Iyer S, Leasure K, Virdone N, Dattelbaum AM, Atanassov PB, López GP (2013) Stable and fluid multilayer phospholipid–silica thin films: mimicking active multi-lamellar biological assemblies. ACS Nano. doi:10.1021/nn401123p

    Google Scholar 

  82. Israelachvili JN, Mitchell DJ, Ninham BW (1976) Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. J Chem Soc, Faraday Trans 2(72):1525–1568

    Google Scholar 

  83. Israelachvili JN, Mitchell DJ (1975) A model for the packing of lipids in bilayer membranes. Biochim Biophys Acta (BBA)-Biomembr 389(1):13–19

    Google Scholar 

  84. Bangham A, Standish M, Watkins J (1965) Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Biol 13(1):238–IN227

    Google Scholar 

  85. Alkan‐Onyuksel H, Demos SM, Lanza GM, Vonesh MJ, Klegerman ME, Kane BJ, Kuszak J, McPherson DD (1996) Development of inherently echogenic liposomes as an ultrasonic contrast agent. J Pharm Sci 85(5):486–490

    Google Scholar 

  86. Dwivedi N, Arunagirinathan M, Sharma S, Bellare J (2010) Silica-coated liposomes for insulin delivery. J Nanomater 2010:34

    Google Scholar 

  87. Bégu S, Pouëssel AA, Lerner DA, Tourné-Péteilh C, Devoisselle JM (2007) Liposil, a promising composite material for drug storage and release. J Control Release 118(1):1–6

    Google Scholar 

  88. Oliver AE (2012) Dry state preservation of nucleated cells: progress and challenges. Biopreserv Biobank 10(4):376–385

    Google Scholar 

  89. Jin W, Brennan JD (2002) Properties and applications of proteins encapsulated within sol–gel derived materials. Anal Chim Acta 461(1):1–36

    Google Scholar 

  90. Avnir D, Braun S, Lev O, Ottolenghi M (1994) Enzymes and other proteins entrapped in sol–gel materials. Chem Mater 6(10):1605–1614

    Google Scholar 

  91. Gautier C, Livage J, Coradin T, Lopez PJ (2006) Sol–gel encapsulation extends diatom viability and reveals their silica dissolution capability. Chem Commun 44:4611–4613

    Google Scholar 

  92. Fiedler D, Hager U, Franke H, Soltmann U, Böttcher H (2007) Algae biocers: astaxanthin formation in sol–gel immobilised living microalgae. J Mater Chem 17:261–266

    Google Scholar 

  93. Rooke JC, Leonard A, Sarmento H, Meunier CF, Descy JP, Su BL (2011) Novel photosynthetic CO2 bioconvertor based on green algae entrapped in low-sodium silica gels. J Mater Chem 21(4):951–959

    Google Scholar 

  94. Heller J, Heller A (1998) Loss of activity or gain in stability of oxidases upon their immobilization in hydrated silica: significance of the electrostatic interactions of surface arginine residues at the entrances of the reaction channels. J Am Chem Soc 120(19):4586–4590

    Google Scholar 

  95. Gill I, Ballesteros A (1998) Encapsulation of biologicals within silicate, siloxane, and hybrid sol–gel polymers: an efficient and generic approach. J Am Chem Soc 120(34):8587–8598

    Google Scholar 

  96. Baca HK, Carnes EC, Ashley CE, Lopez DM, Douthit C, Karlin S, Brinker C (2011) Cell-directed-assembly: directing the formation of nano/bio interfaces and architectures with living cells. BBA-Gen Subj 1810(3):259–267

    Google Scholar 

  97. Carnes EC, Lopez DM, Donegan NP, Cheung A, Gresham H, Timmins GS, Brinker C (2010) Confinement-induced quorum sensing of individual Staphylococcus aureus bacteria. Nat Chem Biol 6(1):41–45

    Google Scholar 

  98. Braun S, Rappoport S, Zusman R, Avnir D, Ottolenghi M (1990) Biochemically active sol–gel glasses: the trapping of enzymes. Mater Lett 10(1):1–5

    Google Scholar 

  99. Martinek K, Klibanov AM, Goldmacher VS, Berezin IV (1977) The principles of enzyme stabilization I. Increase in thermostability of enzymes covalently bound to a complementary surface of a polymer support in a multipoint fashion. Biochim Biophys Acta (BBA) Enzymol 485(1):1–12

    Google Scholar 

  100. Ellerby L, Nishida C, Nishida F, Yamanaka S, Dunn B, Valentine J, Zink J (1992) Encapsulation of proteins in transparent porous silicate glasses prepared by the sol–gel method. Science 255(5048):1113–1115

    Google Scholar 

  101. Chen Q, Kenausis GL, Heller A (1998) Stability of oxidases immobilized in silica gels. J Am Chem Soc 120(19):4582–4585

    Google Scholar 

  102. Frenkel-Mullerad H, Avnir D (2005) Sol–gel materials as efficient enzyme protectors: preserving the activity of phosphatases under extreme pH conditions. J Am Chem Soc 127(22):8077–8081

    Google Scholar 

  103. Meunier CF, Yang XY, Rooke JC, Su BL (2011) Biofuel cells based on the immobilization of photosynthetically active bioentities. ChemCatChem 3(3):476–488

    Google Scholar 

  104. Meunier CF, Van Cutsem P, Kwon YU, Su BL (2009) Investigation of different silica precursors: design of biocompatible silica gels with long term bio-activity of entrapped thylakoids toward artificial leaf. J Mater Chem 19(24):4131–4137

    Google Scholar 

  105. Meunier CF, Dandoy P, Su BL (2010) Encapsulation of cells within silica matrixes: towards a new advance in the conception of living hybrid materials. J Colloid Interface Sci 342(2):211–224

    Google Scholar 

  106. Rasmussen M, Shrier A, Minteer SD (2013) High performance thylakoid bio-solar cell using laccase enzymatic biocathodes. Phys Chem Chem Phys 15(23):9062–9065

    Google Scholar 

  107. Minteer SD, Atanassov P, Luckarift HR, Johnson GR (2012) New materials for biological fuel cells. Mater Today 15(4):166–173

    Google Scholar 

  108. Maltzman SL, Minteer SD (2012) Mitochondrial-based voltammetric sensor for pesticides. Anal Methods-UK 4(5):1202–1206

    Google Scholar 

  109. Sakai-Kato K, Hasegawa T, Takaoka A, Kato M, Toyo’oka T, Utsunomiya-Tate N, Kawanishi T (2011) Controlled structure and properties of silicate nanoparticle networks for incorporation of biosystem components. Nanotechnology 22(20):205702

    Google Scholar 

  110. Jenkins JS, Flickinger MC, Velev OD (2013) Engineering cellular photocomposite materials using convective assembly. Materials 6(5):1803–1825

    Google Scholar 

  111. Dickson DJ, Ely RL (2013) Silica sol–gel encapsulation of cyanobacteria: lessons for academic and applied research. Appl Microbiol Biotechnol 97(5):1809–1819

    Google Scholar 

  112. Dickson DJ, Page CJ, Ely RL (2009) Photobiological hydrogen production from Synechocystis sp. PCC 6803 encapsulated in silica sol–gel. Int J Hydrog Energy 34:204–215

    Google Scholar 

  113. Dickson DJ, Luterra MD, Ely RL (2012) Transcriptomic responses of Synechocystis sp. PCC 6803 encapsulated in silica gel. Appl Microbiol Biotechnol 96(1):183–196

    Google Scholar 

  114. Sicard C, Brayner R, Margueritat J, Hemadi M, Coute A, Yepremian C, Djediat C, Aubard J, Fievet F, Livage J, Coradin T (2010) Nano-gold biosynthesis by silica-encapsulated micro-algae: a “living” bio-hybrid material. J Mater Chem 20(42):9342–9347

    Google Scholar 

  115. Al-Saraj M, Abdel-Latif MS, El-Nahal I, Baraka R (1999) Bioaccumulation of some hazardous metals by sol–gel entrapped microorganisms. J Non-Cryst Solids 248(2–3):137–140

    Google Scholar 

  116. Alvarez GS, Foglia ML, Camporotondi DE, Tuttolomondo MV, Desimone MF, Diaz LE (2011) A functional material that combines the Cr(VI) reduction activity of Burkholderia sp. with the adsorbent capacity of sol–gel materials. J Mater Chem 21(17):6359–6364

    Google Scholar 

  117. Khongkhaem P, Intasiri A, Luepromchai E (2011) Silica-immobilized Methylobacterium sp. NP3 and Acinetobacter sp. PK1 degrade high concentrations of phenol. Lett Appl Microbiol 52(5):448–455

    Google Scholar 

  118. Pannier A, Mkandawire M, Soltmann U, Pompe W, Bottcher H (2012) Biological activity and mechanical stability of sol–gel-based biofilters using the freeze-gelation technique for immobilization of Rhodococcus ruber. Appl Microbiol Biotechnol 93(4):1755–1767

    Google Scholar 

  119. Habibi A, Vahabzadeh F (2013) Degradation of formaldehyde at high concentrations by phenol-adapted Ralstonia eutropha closely related topink-pigmented facultative methylotrophs. J Environ Sci Health A 48:279–292

    Google Scholar 

  120. Duarte K, Justino CIL, Pereira R, Panteleitchouk TSL, Freitas AC, Rocha-Santos TAP, Duarte AC (2013) Removal of the organic content from a bleached kraft pulp mill effluent by a treatment with silica-alginate-fungi biocomposites. J Environ Sci Health A 48(2):166–172

    Google Scholar 

  121. Duarte KR, Freitas AC, Pereira R, Pinheiro JC, Goncalves F, Azaari H, El Azzouzi M, Zrineh A, Zaydoun S, Duarte AC, Rocha-Santos TAP (2012) Treatment of olive oil mill wastewater by silica-alginate-fungi biocomposites. Water Air Soil Pollut 223(7):4307–4318

    Google Scholar 

  122. Luckarift HR, Sizemore SR, Farrington KE, Fulmer PA, Biffinger JC, Nadeau LJ, Johnson GR (2011) Biodegradation of medium chain hydrocarbons by Acinetobacter venetianus 2AW immobilized to hair-based adsorbent mats. Biotechnol Prog 27(6):1580–1587

    Google Scholar 

  123. El-Naggar MY, Finkel SE (2013) Live wires. The Scientist 27:38–43

    Google Scholar 

  124. Lovley DR (2011) Live wires: direct extracellular electron exchange for bioenergy and the bioremediation of energy-related contamination. Energy Environ Sci 4(12):4896–4906

    Google Scholar 

  125. Nealson KH, Finkel SE (2011) Electron flow and biofilms. MRS Bull 36(5):380–384

    Google Scholar 

  126. Luckarift HR, Sizemore SR, Roy J, Lau C, Gupta G, Atanassov P, Johnson GR (2010) Standardized microbial fuel cell anodes of silica-immobilized Shewanella oneidensis. Chem Commun 46(33):6048–6050

    Google Scholar 

  127. Strack G, Luckarift HR, Sizemore SR, Nichols RK, Farrington KE, Wu PK, Atanassov P, Biffinger JC, Johnson GR (2013) Power generation from a hybrid biological fuel cell in seawater. Bioresour Technol 128:222–228

    Google Scholar 

  128. Roy JN, Luckarift HR, Lau C, Falase A, Garcia KE, Ista LK, Chellamuthu P, Ramasamy RP, Gadhamshetty V, Wanger G, Gorby YA, Nealson KH, Bretschger O, Johnson GR, Atanassov P (2012) A study of the flavin response by Shewanella cultures in carbon-limited environments. RSC Adv 2(26):10020–10027

    Google Scholar 

  129. Jaroch D, McLamore E, Zhang W, Shi J, Garland J, Banks MK, Porterfield DM, Rickus JL (2011) Cell-mediated deposition of porous silica on bacterial biofilms. Biotechnol Bioeng 108(10):2249–2260

    Google Scholar 

  130. Ben-Yoav H, Melamed S, Freeman A, Shacham-Diamand Y, Belkin S (2011) Whole-cell biochips for bio-sensing: integration of live cells and inanimate surfaces. Crit Rev Biotechnol 31(4):337–353

    Google Scholar 

  131. Blondeau M, Coradin T (2012) Living materials from sol–gel chemistry: current challenges and perspectives. J Mater Chem 22(42):22335–22343

    Google Scholar 

  132. Ghach W, Etienne M, Billard P, Jorand FPA, Walcarius A (2013) Electrochemically assisted bacteria encapsulation in thin hybrid sol–gel films. J Mater Chem B 1(7):1052–1059

    Google Scholar 

  133. Harper JC, Lopez DM, Larkin EC, Economides MK, McIntyre SK, Alam TM, Tartis MS, Werner-Washburne M, Brinker C, Brozik SM, Wheeler DR (2011) Encapsulation of S. cerevisiae in poly(glycerol) silicate derived matrices: effect of matrix additives and cell metabolic phase on long-term viability and rate of gene expression. Chem Mater 23(10):2555–2564

    Google Scholar 

  134. Desimone MF, De Marzi MC, Alvarez GS, Mathov I, Diaz LE, Malchiodi EL (2011) Production of monoclonal antibodies from hybridoma cells immobilized in 3D sol–gel silica matrices. J Mater Chem 21(36):13865–13872

    Google Scholar 

  135. Desimone MF, Helary C, Mosser G, Giraud-Guille MM, Livage J, Coradin T (2010) Fibroblast encapsulation in hybrid silica-collagen hydrogels. J Mater Chem 20(4):666–668

    Google Scholar 

  136. Leonard A, Dandoy P, Danloy E, Leroux G, Meunier CF, Rooke JC, Su BL (2011) Whole-cell based hybrid materials for green energy production, environmental remediation and smart cell-therapy. Chem Soc Rev 40(2):860–885

    Google Scholar 

  137. Dandoy P, Meunier CF, Michiels C, Su BL (2011) Hybrid shell engineering of animal cells for immune protections and regulation of drug delivery: towards the design of “Artificial Organs”. Plos One 6(6):e20983

    Google Scholar 

  138. Dandoy P, Meunier CF, Leroux G, Voisin V, Giordano L, Caron N, Michiels C, Su BL (2013) A hybrid assembly by encapsulation of human cells within mineralised beads for cell therapy. Plos One 8(1):e54683

    Google Scholar 

  139. Gimeno-Fabra M, Peroglio M, Eglin D, Alini M, Perry CC (2011) Combined release of platelet-rich plasma and 3D-mesenchymal stem cell encapsulation in alginate hydrogels modified by the presence of silica. J Mater Chem 21(12):4086–4089

    Google Scholar 

  140. O’Sullivan ES, Vegas A, Anderson DG, Weir GC (2011) Islets transplanted in immunoisolation devices: a review of the progress and the challenges that remain. Endocr Rev 32(6):827–844

    Google Scholar 

  141. Pope EJA, Braun K, Peterson CM (1997) Bioartificial organs. 1. Silica gel encapsulated pancreatic islets for the treatment of diabetes mellitus. J Sol–gel Sci Technol 8(1–3):635–639

    Google Scholar 

  142. Boninsegna S, Bosetti P, Carturan G, Dellagiacoma G, Dal Monte R, Rossi M (2003) Encapsulation of individual pancreatic islets by sol–gel SiO2: a novel procedure for perspective cellular grafts. J Biotechnol 100(3):277–286

    Google Scholar 

  143. Catalano PN, Bourguignon NS, Alvarez GS, Libertun C, Diaz LE, Desimone MF, Lux-Lantos V (2012) Sol–gel immobilized ovarian follicles: collaboration between two different cell types in hormone production and secretion. J Mater Chem 22(23):11681–11687

    Google Scholar 

Download references

Acknowledgments

Funding for this work was provided by the U.S. National Science Foundation through the Research Triangle Materials Research Science and Engineering Center (Triangle MRSEC, Grant no. DMR-1121107) and the EPSCoR Program (no. IIA-130136). W.H. acknowledges support of a NIH Biotechnology Predoctoral Fellowship (T32 GM 8555). G.G. would like to acknowledge the Center for Integrated Nanotechnologies (CINT), Los Alamos National Laboratory, and the Department of Energy LANL/LDRD Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Han .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Han, W., Ista, L.K., Gupta, G., Li, L., Harris, J.M., López, G.P. (2014). Handbook of Nanomaterials Properties: Siliceous Nanobiomaterials. In: Bhushan, B., Luo, D., Schricker, S., Sigmund, W., Zauscher, S. (eds) Handbook of Nanomaterials Properties. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31107-9_30

Download citation

Publish with us

Policies and ethics