Skip to main content

Magnetic Nanoparticles for Biomedical Applications

  • Chapter
  • First Online:
Book cover Handbook of Nanomaterials Properties

Abstract

In this chapter we present the design fundamentals on the development of magnetic nanoparticle systems to become suitable for biomedical applications, from the most used strategies for chemical synthesis and surface functionalization to their main researched applications in the biomedical field nowadays. Special attention has been paid on magnetic resonance imaging and magnetically induced hyperthermia. A revision and recent advances on these fields will be shown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 629.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 799.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ko SH, Park I, Pan H, Grigoropoulos CP, Pisano AP, Luscombe CK, Fréchet JMJ (2007) Direct nanoimprinting of metal nanoparticles for nanoscale electronics fabrication. Nano Lett 7(7):1869

    Google Scholar 

  2. Gibson RF (2010) A review of recent research on mechanics of multifunctional composite materials and structures. Compos Struct 92:2793

    Google Scholar 

  3. Bañobre-López M, Piñeiro-Redondo Y, De Santis R, Gloria A, Ambrosio L, Tampieri A, Dediu V, Rivas J (2011) Poly(caprolactone) based magnetic scaffolds for bone tissue engineering. J Appl Phys 109:07B313

    Google Scholar 

  4. Rivas J, Bañobre-López M, Piñeiro-Redondo Y, Rivas B, López-Quintela MA (2012) Magnetic nanoparticles for application in cancer therapy. J Magn Magn Mater 324:3499

    Google Scholar 

  5. Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L, Muller RN (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108(6):2064

    Google Scholar 

  6. Hadjipanayis CG, Bonder MJ, Balakrishnan S, Wang X, Mao H, Hadjipanayis GC (2008) Metallic iron nanoparticles for MRI contrast enhancement and local hyperthermia. Small 4(11):1925

    Google Scholar 

  7. Langer R (1990) New methods of drug delivery. Science 249(4976):1527

    Google Scholar 

  8. Bulte JWM, Modo MMJ (eds) (2008) Nanoparticles in biomedical imaging – emerging 1009 technologies and applications. Springer, New York

    Google Scholar 

  9. Lu AH, Salabas EL, Schüth F (2007) Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed 46(8):1222

    Google Scholar 

  10. Salgueiriño-Maceira V, Correa-Duarte MA (2007) Increasing the complexity of magnetic core/shell structured nanocomposites for biological applications. Adv Mater 19(23):4131

    Google Scholar 

  11. LaMer VK, Dinegar RH (1950) Theory, production and mechanism of formation of monodispersed hydrosols. J Am Chem Soc 72(11):4847

    Google Scholar 

  12. den Ouden CJJ, Thompson RW (1991) Analysis of the formation of monodisperse populations by homogeneous nucleation. J Colloid Interface Sci 143(1):77

    Google Scholar 

  13. Sugimoto T, Matijevic E (1980) Formation of uniform spherical magnetite particles by crystallization from ferrous hydroxide gels. J Colloid Interface Sci 74(1):227

    Google Scholar 

  14. Ocaña M, Rodriguez-Clemente R, Serna CJ (1995) Uniform colloidal particles in solution: formation mechanisms. Adv Mater 7(2):212

    Google Scholar 

  15. Lee J-H, Huh Y-M, Y-w J, J-w S, J-t J, Song H-T, Kim S, Cho E-J, Yoon H-G, Suh J-S, Cheon J (2007) Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nat Med 13:95

    Google Scholar 

  16. Cushing BL, Kolesnichenko VL, O’Connor CJ (2004) Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chem Rev 104(9):3893

    Google Scholar 

  17. Piñeiro-Redondo Y, Bañobre-López M, Pardiñas-Blanco I, Goya G, López-Quintela MA, Rivas J (2011) The influence of colloidal parameters on the specific power absorption of PAA-coated magnetite nanoparticles. Nano Res Lett 6:383

    Google Scholar 

  18. Zhang Y, Kohler N, Zhang M (2002) Surface modification of superparamagnetic magnetite nanoparticles and their intracellular uptake. Biomaterials 23(7):1553

    Google Scholar 

  19. Petri-Fink A, Chastellain M, Juillerat-Jeanneret L, Ferrari A, Hofmann H (2005) Development of functionalized superparamagnetic iron oxide nanoparticles for interaction with human cancer cells. Biomaterials 26(15):2685

    Google Scholar 

  20. D’Souza AJM, Schowen RL, Topp EM (2004) Polyvinylpyrrolidone-drug conjugate: synthesis and release mechanism. J Control Release 94(1):91

    Google Scholar 

  21. Berry CC, Wells S, Charles S, Aitchison G, Curtis ASG (2004) Cell response to dextran-derivatised iron oxide nanoparticles post internalisation. Biomaterials 25(23):5405

    Google Scholar 

  22. Bergemann C, Müller-Schulte D, Oster J, Brassard L, Lübbe AS (1999) Magnetic ion-exchange nano- and microparticles for medical, biochemical and molecular biological applications. J Magn Magn Mater 194(1–3):45

    Google Scholar 

  23. Rodríguez C, Bañobre-López M, Kolen’ko YV, Rodríguez B, Freitas P, Rivas J (2012) Magnetization drop at high temperature in oleic acid-coated magnetite nanoparticles. IEEE Trans Magn 48(11):3307

    Google Scholar 

  24. Hyeon T, Lee SS, Park J, Chung Y, Na HB (2001) Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process. J Am Chem Soc 123(51):12798

    Google Scholar 

  25. Sun S, Zeng H (2002) Size-controlled synthesis of magnetite nanoparticles. J Am Chem Soc 124(28):8204

    Google Scholar 

  26. Sun S, Zeng H, Robinson DB, Raoux S, Rice PM, Wang SX, Li G (2004) Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles. J Am Chem Soc 126(1):273

    Google Scholar 

  27. Park J, An K, Hwang Y, Park J-G, Noh H-J, Kim J-Y, Park J-H, Hwang N-M, Hyeon T (2004) Ultra-large-scale syntheses of monodisperse nanocrystals. Nat Mater 3(12):891

    Google Scholar 

  28. Li Z, Sun Q, Gao M (2005) Preparation of water-soluble magnetite nanocrystals from hydrated ferric salts in 2-pyrrolidone: mechanism leading to Fe3O4. Angew Chem Int Ed 44(1):123

    Google Scholar 

  29. Hu F, Wei L, Zhou Z, Ran YL, Li Z, Gao M (2006) Preparation of biocompatible magnetite nanocrystals for in vivo magnetic resonance detection of cancer. Adv Mater 18(19):2553

    Google Scholar 

  30. López-Quintela MA, Rivas J (1993) Chemical reactions in microemulsions: a powerful method to obtain ultrafine particles. J Colloid Interface Sci 158(2):446

    Google Scholar 

  31. López-Quintela MA, Rivas J (1996) Nanoscale magnetic particles: synthesis, structure and dynamics. Curr Opinion Colloid Interface Sci 1(6):806

    Google Scholar 

  32. López-Quintela MA, Rivas J, Blanco MC, Tojo C (2003) Synthesis of nanoparticles in microemulsions. In: Liz Marzán LM, Kamat PV (eds) Nanoscale materials, vol 6. Kluwer Academic Plenum, Dordrecht, Netherlands, p 135

    Google Scholar 

  33. López-Quintela MA (2003) Synthesis of nanomaterials in microemulsions: formation mechanisms and growth control. Curr Opin Colloid Interface Sci 8(2):137

    Google Scholar 

  34. Boutonnet M, Kizling J, Stenius P (1982) The preparation of monodisperse colloidal metal particles from microemulsions. Colloids Surf A: Physicochem Eng Aspects 5(3):209

    Google Scholar 

  35. Woo K, Lee HJ, Ahn J-P, Park YS (2003) Sol–gel mediated synthesis of Fe2O3 Nanorods. Adv Mater 15(20):1761

    Google Scholar 

  36. Vidal J, Rivas J, López-Quintela MA (2006) Synthesis of monodisperse maghemite nanoparticles by the microemulsion method. Colloids Surf A Physicochem Eng Asp 288(1–3):44

    Google Scholar 

  37. López-Pérez JA, López-Quintela MA, Mira J, Rivas J, Charles SW (1997) Advances in the preparation of magnetic nanoparticles by the microemulsion method. J Phys Chem B 101(41):8045

    Google Scholar 

  38. Wang X, Zhuang J, Peng Q, Li Y (2005) A general strategy for nanocrystal synthesis. Nature 437(7055):121

    Google Scholar 

  39. Deng H, Li X, Peng Q, Wang X, Chen J, Li Y (2005) Monodisperse magnetic single-crystal ferrite microspheres. Angew Chem Int Ed Engl 44(18):2782

    Google Scholar 

  40. Tartaj P, del Puerto-Morales M, Veintemillas-Verdaguer S, González-Carreño SCJ (2003) The preparation of magnetic nanoparticles for applications in biomedicine. J Phys D: Appl Phys 36:R182

    Google Scholar 

  41. Denizot B, Tanguy G, Hindre F, Rump E, Lejeune JJ, Jallet P (1999) Phosphorylcholine coating of iron oxide nanoparticles. J Colloid Interface Sci 209(1):66

    Google Scholar 

  42. Hansen T, Clermont G, Alves A, Eloy R, Brochhausen C, Boutrand JP, Gatti AM, Kirkpatrick CJ (2006) Biological tolerance of different materials in bulk and nanoparticulate form in a rat model: sarcoma development by nanoparticles. J R Soc Interface 3(11):767

    Google Scholar 

  43. Ahamed M (2011) Toxic response of nickel nanoparticles in human lung epithelial A549 cells. Toxicol In Vitro 25(4):930

    Google Scholar 

  44. Mehdaoui B, Meffre A, Lacroix L-M, Carrey J, Lachaize S, Gougeon M, Respaud M, Chaudret B (2010) Large specific absorption rates in the magnetic hyperthermia properties of metallic iron nanocubes. J Magn Magn Mater 322(19):L49

    Google Scholar 

  45. Deng M, Tu N, Bai F, Wang L (2012) Surface functionalization of hydrophobic nanocrystals with one particle per micelle for bioapplications. Chem Mater 24(13):2592

    Google Scholar 

  46. Euliss LE, Grancharov SG, O’Brien S, Deming TJ, Stucky GD, Murray CB, Held GA (2003) Cooperative assembly of magnetic nanoparticles and block copolypeptides in aqueous media. Nano Lett 3(11):1489

    Google Scholar 

  47. Liu X, Guan Y, Ma Z, Liu H (2004) Surface modification and characterization of magnetic polymer nanospheres prepared by miniemulsion polymerization. Langmuir 20(23):10278

    Google Scholar 

  48. Hong R, Fischer NO, Emrick T, Rotello VM (2005) Surface PEGylation and ligand exchange chemistry of FePt nanoparticles for biological applications. Chem Mater 17(18):4617

    Google Scholar 

  49. Sahoo Y, Pizem H, Fried T, Golodnitsky D, Burstein L, Sukenik CN, Markovich G (2001) Alkyl phosphonate/phosphate coating on magnetite nanoparticles: a comparison with fatty acids. Langmuir 17(25):7907

    Google Scholar 

  50. Kim M, Chen Y, Liu Y, Peng X (2005) Super-stable, high-quality Fe3O4 dendron–nanocrystals dispersible in both organic and aqueous solutions. Adv Mater 17(11):1429

    Google Scholar 

  51. Kobayasi Y, Horie M, Konno M, Rodriguez-Gonzalez B, Liz-Marzan LM (2003) Preparation and properties of silica-coated cobalt nanoparticles. J Phys Chem B 107(30):7420

    Google Scholar 

  52. Lu Y, Yin Y, Mayers T, Xia Y (2002) Modifying the surface properties of superparamagnetic iron oxide nanoparticles through a sol−gel approach. Nano Lett 2(3):183

    Google Scholar 

  53. Liu Q, Xu Z, Finch JA, Egerton R (1998) A novel two-step silica-coating process for engineering magnetic nanocomposites. Chem Mater 10(12):3936

    Google Scholar 

  54. Cheong S, Ferguson P, Hermans IF, Jameson GNL, Prabakar S, Herman DAJ, Tilley RD (2012) Synthesis and stability of highly crystalline and stable iron/iron oxide core/shell nanoparticles for biomedical applications. Chem Plus Chem 77(2):135

    Google Scholar 

  55. Shen L, Laibinis PE, Hatton TA (1999) Bilayer surfactant stabilized magnetic fluids: synthesis and interactions at interfaces. Langmuir 15(2):447

    Google Scholar 

  56. Massart R (1981) Preparation of aqueous magnetic liquids in alkaline and acidic media. IEEE Trans Magn MAG-17:1247

    Google Scholar 

  57. Deng J, Ding X, Zhang W, Peng Y, Wang J, Long X, Li P, Chan ASC (2002) Magnetic and conducting Fe3O4-cross-linked polyaniline nanoparticles with core-shell structure. Polymer 43:2179

    Google Scholar 

  58. Vestal CR, Zhang ZJ (2002) Effects of surface coordination chemistry on the magnetic properties of MnFe(2)O(4) spinel ferrite nanoparticles. J Am Chem Soc 124:14312

    Google Scholar 

  59. Dresco PA, Zaitsev VS, Gambino RJ, Chu B (1999) Preparation and properties of magnetite and polymer magnetite nanoparticles. Langmuir 15:1945

    Google Scholar 

  60. Schladt TD, Schneider K, Schild H, Tremel W (2011) Synthesis and bio-functionalization of magnetic nanoparticles for medical diagnosis and treatment. Dalton Trans 40:6315

    Google Scholar 

  61. Xu Z, Hou Y, Sun S (2007) Magnetic core/shell Fe3O4/Au and Fe3O4/Au/Ag nanoparticles with tunable plasmonic properties. J Am Chem Soc 129:8698

    Google Scholar 

  62. Stöber W, Fink A, Bohn EJ (1968) Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci 26:62

    Google Scholar 

  63. Tago T, Hatsuta T, Miyajima K, Kishida M, Tashiro S, Wakabayashi K (2002) Novel synthesis of silica-coated ferrite nanoparticles prepared using water-in-oil microemulsion. J Am Ceram Soc 85:2188

    Google Scholar 

  64. Medintz IL, Stewart MH, Trammell SA, Susumu K, Delehanty JB, Mei BC, Melinger JS, Blanco-Canosa JB, Dawson PE, Mattoussi H (2010) Quantum-dot/dopamine bioconjugates function as redox coupled assemblies for in vitro and intracellular pH sensing. Nat Mater 9:676

    Google Scholar 

  65. Dong A, Ye X, Chen J, Kang Y, Gordon T, Kikkawa JM, Murray CB (2011) A generalized ligand-exchange strategy enabling sequential surface functionalization of colloidal nanocrystals. J Am Chem Soc 133:998

    Google Scholar 

  66. Erathodiyil N, Ying JY (2011) Functionalization of inorganic nanoparticles for bioimaging applications. Acc Chem Res 44:925

    Google Scholar 

  67. Pileni MP (2001) Magnetic fluids: fabrication, magnetic properties, and organization of nanocrystals. Adv Func Mater 11(5):323

    Google Scholar 

  68. Sun SH, Zeng H, Robinson DB, Raoux S, Rice PM, Wang SX, Li GX (2004) Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles. J Am Chem Soc 126(1):273

    Google Scholar 

  69. Lattuada M, Alan Hatton T (2007) Functionalization of monodisperse magnetic nanoparticles. Langmuir 23:2158

    Google Scholar 

  70. von Werne T, Patten TE (2001) Atom transfer radical polymerization from nanoparticles: a tool for the preparation of well-defined hybrid nanostructures and for understanding the chemistry of controlled/“living” radical polymerizations from surfaces. J Am Chem Soc 123(31):7497

    Google Scholar 

  71. Marutani E, Yamamoto S, Ninjbadgar T, Tsujii Y, Fukuda T, Takano M (2004) Surface-initiated atom transfer radical polymerization of methyl mthacrylate on magnetic nanoparticles. Polymer 45(7):3321

    Google Scholar 

  72. Schmidt AM (2005) Magnetic core-shell nanoparticles by surface-initiated ring-opening polymerization of e-caprolactone. Macromol Rapid Commun 26(2):93

    Google Scholar 

  73. Wang B, Xu C, Xie J, Yang Z, Sun S (2008) pH controlled release of chromone from chromone-Fe3O4 nanoparticles. J Am Chem Soc 130:14436

    Google Scholar 

  74. Frey NA, Peng S, Cheng K, Sun S (2009) Magnetic nanoparticles: synthesis, functionalization, and applications in bioimaging and magnetic energy storage. Chem Soc Rev 38:2532

    Google Scholar 

  75. Xie J, Chen K, Lee H-Y, Xu C, Hsu AR, Peng S, Chen X, Sun S (2008) Ultrasmall c(RGDyK)-coated Fe3O4 nanoparticles and their specific targeting to integrin αvβ3-rich tumor cells. J Am Chem Soc 130:7542

    Google Scholar 

  76. Ma X, Zhao Y, Liang X-J (2011) Theranostic nanoparticles engineered for clinic and pharmaceutics. Acc Chem Res 44(10):1114

    Google Scholar 

  77. Lübbe AS, Bergemann C, Riess H, Schriever F, Reichardt P, Possinger K, Matthias M, Dörken B, Herrmann F, Gürtler R, Hohenberger P, Haas N, Sohr R, Sander B, Lemke A-J, Ohlendorf D, Huhnt W, Huhn D (1996) Clinical experiences with magnetic drug targeting: a phase I study with 4′-epidoxorubicin in 14 patients with advanced solid tumors. Cancer Res 56:4686

    Google Scholar 

  78. Na HB, Song IC, Hyeon T (2009) Inorganic nanoparticles for MRI contrast agents. Adv Mater 21(21):2133

    Google Scholar 

  79. Caravan P, Ellison JJ, McMurry TJ, Lauffer RB (1999) Gadolinium(III) chelates as MRI contrast agents: structure, dynamics, and applications. Chem Rev 99:2293

    Google Scholar 

  80. Sun C, Du K, Fang C, Bhattarai N, Veiseh O, Kievit F, Stephen Z, Lee D, Zhang M (2010) PEG-mediated synthesis of highly dispersive multifunctional superparamagnetic nanoparticles: their physicochemical properties and function in vivo. ACS Nano 4(4):2402

    Google Scholar 

  81. Pankhurst QA, Connolly J, Jones SK, Dobson J (2003) Applications of magnetic nanoparticles in biomedicine. J Phys D: Appl Phys 36:R167

    Google Scholar 

  82. Stephen ZR, Kievit FM, Zhang M (2011) Magnetite nanoparticles for medical MR imaging. Mater Today 14:330

    Google Scholar 

  83. Corot C, Robert P, Idee JM, Port M (2006) Recent advances in iron oxide nanocrystal technology for medical imaging. Adv Drug Deliver Rev 58:1471

    Google Scholar 

  84. Sun C, Lee JSH, Zhang M (2008) Magnetic nanoparticles in MR imaging and drug delivery. Adv Drug Deliver Rev 60:1252

    Google Scholar 

  85. Bae KH, Lee K, Kim C, Park TG (2011) Surface functionalized hollow manganese oxide nanoparticles for cancer targeted siRNA delivery and magnetic resonance imaging. Biomaterials 32(1):176

    Google Scholar 

  86. Yang H, Zhuang Y, Sun Y, Dai A, Shi X, Wu D, Li F, Hu H, Yang S (2011) Targeted dual-contrast T1- and T2-weighted magnetic resonance imaging of tumors using multifunctional gadolinium-labeled superparamagnetic iron oxide nanoparticles. Biomaterials 32:4584

    Google Scholar 

  87. J-s C, Lee J-H, Shin T-H, Song H-T, Kim EY, Cheon J (2010) Self-confirming “AND” logic nanoparticles for fault-free MRI. J Amer Chem Soc 132:11015

    Google Scholar 

  88. Chambon C, Clement O, Leblanche A, Schoumanclaeys E, Frija G (1993) Superparamagnetic iron oxides as positive MR contrast agents: in vitro and in vivo evidence. J Magn Reson Imaging 11(4):509

    Google Scholar 

  89. Taboada E, Rodriguez E, Roig A, Oro J, Roch A, Muller RN (2007) Relaxometric and magnetic characterization of ultrasmall iron oxide nanoparticles with high magnetization. Evaluation as potential T1 magnetic resonance imaging contrast agents for molecular imaging. Langmuir 23(8):4583

    Google Scholar 

  90. Gref R, Minamitake Y, Peracchia MT, Trubetskoy V, Torchilin V, Langer R (1994) Biodegradable long-circulating polymeric nanospheres. Science 263:1600

    Google Scholar 

  91. Seo WS, Lee JH, Sun X, Suzuki Y, Mann D, Liu Z, Terashima M, Yang PC, McConnell MV, Nishimura DG, Dai H (2006) FeCo/graphitic-shell nanocrystals as advanced magnetic-resonance-imaging and near-infrared agents. Nat Mater 5:971

    Google Scholar 

  92. Huang J, Zhong X, Wang L, Yang L, Mao H (2012) Improving the magnetic resonance imaging contrast and detection methods with engineered magnetic nanoparticles. Theranostics 2(1):86

    Google Scholar 

  93. Jang JT, Nah H, Lee JH, Moon SH, Kim MG, Cheon J (2009) Critical enhancements of MRI contrast and hyperthermic effects by dopant-controlled magnetic nanoparticles. Angew Chem Int Ed 48:1234

    Google Scholar 

  94. Jun YW, Huh YM, Choi JS, Lee JH, Song HT, Kim S, Yoon S, Kim KS, Shin JS, Suh JS, Cheon J (2005) Nanoscale size effect of magnetic nanocrystals and their utilization for cancer diagnosis via magnetic resonance imaging. J Am Chem Soc 127:5732

    Google Scholar 

  95. Ai H, Flask C, Weinberg B, Shuai X, Pagel MD, Farrell D, Duerk J, Gao JM (2005) Magnetite-loaded polymeric micelles as ultrasensitive magnetic-resonance probes. Adv Mater 17:1949

    Google Scholar 

  96. Berret J-F, Schonbeck N, Gazeau F, El Kharrat D, Sandre O, Vacher A, Airiau M (2006) Controlled clustering of superparamagnetic nanoparticles using block copolymers: design of new contrast agents for magnetic resonance imaging. J Am Chem Soc 128:1755

    Google Scholar 

  97. Na HB, Lee JH, An K, Park YI, Park M, Lee IS, Nam D-H, Kim ST, Kim S-H, Kim S-W, Lim K-H, Kim K-S, Kim S-O, Hyeon T (2007) Development of a T1 contrast agent for magnetic resonance imaging using MnO nanoparticles. Angew Chem Int Ed 46(28):5397

    Google Scholar 

  98. Shin J, Anisur RM, Ko MK, Im GH, Lee JH, Lee IS (2009) Hollow manganese oxide nanoparticles as multifunctional agents for magnetic resonance imaging and drug delivery. Angew Chem Int Ed 48:321

    Google Scholar 

  99. Duan H, Kuang M, Wang X, Wang YA, Mao H, Nie S (2008) Reexamining the effects of particle size and surface chemistry on the magnetic properties of iron oxide nanocrystals: new insights into spin disorder and proton relaxivity. J Phys Chem C 112:8127

    Google Scholar 

  100. Tong S, Hou S, Zheng Z, Zhou J, Bao G (2010) Coating optimization of superparamagnetic iron oxide nanoparticles for high T2 relaxivity. Nano Lett 10:4607

    Google Scholar 

  101. Koenig SH, Kellar KE (1995) Theory of 1/T1 and 1/T2 NMRD profiles of solutions of magnetic nanoparticles. Magn Reson Med 34:227

    Google Scholar 

  102. Weissleder R, Moore A, Mahmood U, Bhorade R, Benveniste H, Chiocca E, Basilion JP (2000) In vivo magnetic resonance imaging of transgene expression. Nat Med 6:351

    Google Scholar 

  103. Jun YW, Lee JH, Cheon J (2008) Chemical design of nanoparticle probes for high-performance magnetic resonance imaging. Angew Chem Int Ed 47:5122

    Google Scholar 

  104. Bulte JWM, Douglas T, Witwer B, Zhang SC, Strable E, Lewis BK, Zywicke H, Miller B, van Gelderen P, Moskowitz BM, Duncan ID, Frank JA (2001) Magnetodendrimers allow endosomal magnetic labeling and in vivo tracking of stem cells. Nat Biotechnol 19:1141

    Google Scholar 

  105. de Vries IJM, Lesterhuis WJ, Barentsz JO, Verdijk P, van Krieken JH, Boerman OC, Oyen WJG, Bonenkamp JJ, Boezeman JB, Adema GJ, Bulte JWM, Scheenen TWJ, Punt CJA, Heerschap A, Figdor CG (2005) Magnetic resonance tracking of dendritic cells in melanoma patients for monitoring of cellular therapy. Nat Biotechnol 23:1407

    Google Scholar 

  106. Zhao M, Beauregard DA, Loizou L, Davletov B, Brindle KM (2001) Non-invasive detection of apoptosis using magnetic resonance imaging and a targeted contrast agent. Nat Med 7:1241

    Google Scholar 

  107. Schellenberger EA, Sosnovik D, Weissleder R, Josephson L (2004) Magneto/optical Annexin V, a multimodal protein. Bioconjugate Chem 15:1062

    Google Scholar 

  108. Sosnovik D, Weissleder R (2007) Emerging concepts in molecular MRI. Curr Opin Biotechnol 18:4

    Google Scholar 

  109. Harisinghani MG, Barentsz J, Hahn PF, Deserno WM, Tabatabaei S, van de Kaa CH, de la Rosette J, Weissleder R (2003) Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N Engl J Med 348:2491

    Google Scholar 

  110. Kapp DS, Hahn GM, Carlson RW (2000) Principles of hyperthermia. Decker, Ontario

    Google Scholar 

  111. Gü S (2004) Nanoparticles: from theory to application. Wiley-VCH, Weinheim

    Google Scholar 

  112. Mornet S, Vasseur S, Grasset F, Duguet E (2004) Magnetic nanoparticle design for medical diagnosis and therapy. J Mater Chem 14:2161

    Google Scholar 

  113. Andra W, Nowak H (1998) Magnetism in medicine: a handbook. Wiley-VCH, Berlin

    Google Scholar 

  114. Hergt R, Andra W, d’Ambly CG, Hilger I, Kaiser WA, Richter U, Schmidt HG (1998) Physical limits of hyperthermia using magnetite fine particles. IEEE Trans Magn 34:3745

    Google Scholar 

  115. Fortin JP, Wilhelm C, Servais J, Ménager C, Bacri JC, Gazeau F (2007) Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia. J Am Chem Soc 129:2628

    Google Scholar 

  116. Eggeman AS, Majetich SA, Farrell D, Pankhurst QA (2007) Size and concentration effects on high frequency hysteresis of iron oxide nanoparticles. IEEE Trans Magn 43:2451

    Google Scholar 

  117. magforce®. www.magforce.com

  118. Hergt R, Dutz S, Röder M (2008) Effects of size distribution on hysteresis losses of magnetic nanoparticles for hyperthermia. J Phys: Condens Matter 20:385214

    Google Scholar 

  119. Rosensweig RE (2002) Heating magnetic fluid with alternating magnetic field. J Magn Magn Mater 252:370

    Google Scholar 

  120. Hergt R, Dutz S, Ziesberger M (2010) Validity limits of the Néel relaxation model of magnetic nanoparticles for hyperthermia. Nanotecnology 21:015706

    Google Scholar 

  121. Carrey J, Mehdaoui B, Respaud M (2011) Simple models for dynamic hysteresis loop calculations of magnetic single-domain nanoparticles: Application to magnetic hyperthermia optimization. J Appl Phys 109:083921

    Google Scholar 

  122. Tefferi A (2003) A contemporary approach to the diagnosis and management of polycythemia vera. Curr Hematol Rep 2(3):237

    Google Scholar 

  123. Kuimova MK (2012) Mapping viscosity in cells using molecular rotors. Phys Chem Chem Phys 14(37):12671

    Google Scholar 

  124. Wang X, Tang J, Shi L (2010) Induction heating of magnetic fluids for hyperthermia treatment. IEEE Trans Mag 46:1043

    Google Scholar 

  125. Zhang LY, Gu HC, Wang XM (2007) Magnetite ferrofluid with high specific absorption rate for application in hyperthermia. J Mag Mag Mater 311:228

    Google Scholar 

  126. Wang X, Gu H, Yang Z (2005) The heating effect of magnetic fluids in an alternating magnetic field. J Magn Magn Mater 293:334

    Google Scholar 

  127. Fortin JP, Gazeau F, Wilhelm C (2008) Intracellular heating of living cells through Néel relaxation of magnetic nanoparticles. Biophys Lett 37:223

    Google Scholar 

  128. Ma M, Wu Y, Zhou J, Sun Y, Zhang Y, Gu N (2004) Size dependence of specific power absorption of Fe3O4 particles in AC magnetic field. J Magn Magn Mater 268:33

    Google Scholar 

  129. de la Presa P, Luengo Y, Multinger M, Costo R, Morales MP, Rivero G, Hernando A (2012) Study of heating efficiency as a function of concentration, size, and applied field in γ-Fe2O3 nanoparticles. J Phys Chem 116:25602

    Google Scholar 

  130. Motoyama J, Hakata T, Kato R, Yamashita N, Morino T, Kobayashi T, Honda H (2008) Hyperthermic treatment of DMBA-induced rat mammary cancer using magnetic nanoparticles. Biomagnetic Res Techn 6(4):1

    Google Scholar 

  131. Cótica LF, Santos IA, Girotto EM, Ferri EV, Coelho AA (2010) Surface spin disorder effects in magnetite and poly(thiophene)-coated magnetite nanoparticles. J Appl Phys 108:064325

    Google Scholar 

  132. Guardia P, Batlle-Brugal B, Roca AG, Iglesias O, Morales MP, Serna CJ, Labarta A, Batlle X (2007) Surfactant effects in magnetite nanoparticles of controlled size. J Magn Magn Mater 316:e756

    Google Scholar 

  133. Dionigi C, Piñeiro Y, Riminucci A, Bañobre-López M, Rivas J, Dediu V (2013) Regulating the thermal response of PNIPAM hydrogels by controlling the adsorption of magnetite nanoparticles. Appl Phys A (in press)

    Google Scholar 

  134. Regmi R, Bhattarai SR, Sudakar C, Wani CS, Cunningham R, Vaishnava PP, Naik R, Oupicky D, Lawes G (2010) Hyperthermia controlled rapid drug release from thermosensitive magnetic microgels. J Mater Chem 20:6158

    Google Scholar 

  135. Urtizberea A, Natividad E, Arizaga A, Castro M, Mediano A (2010) Specific absorption rates and magnetic properties of ferrofluids with interaction effects at low concentrations. J Phys Chem C 114:4916

    Google Scholar 

  136. Linh PH, Thach PV, Tuan NA, Thuan NC, Mahn DH, Phuc NX, Hong LV (2009) Magnetic fluid based on Fe3O4 nanoparticles: preparation and hyperthermia application. J Phys: Conf Ser 187:012069

    Google Scholar 

  137. Martinez-Boubeta C, Simeonidis K, Serantes D, Conde-Leborán I, Kazakis I, Stefanou G, Peña L, Galceran R, Balcells L, Monty C, Baldomir D, Mitrakas M, Angelakeris M (2012) Adjustable hyperthermia response of self-assembled ferromagnetic Fe-MgO core–shell nanoparticles by tuning dipole–dipole interactions. Adv Funct Mater 22(17):1

    Google Scholar 

  138. Calvo-Fuentes J, Rivas J, López-Quintela MA (2012) Synthesis of subnanometric metal nanoparticles. In: Bhushan B (ed) Encyclopedia of nanotechnology. Springer Verlag, Heidelberg, Germany, p 2639

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Prof. Carlos Vázquez-Vázquez for the critical reading of this manuscript. Undoubtedly, his comments have contributed to a significant quality improvement of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Bañobre-López .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bañobre-López, M., Piñeiro, Y., López-Quintela, M.A., Rivas, J. (2014). Magnetic Nanoparticles for Biomedical Applications. In: Bhushan, B., Luo, D., Schricker, S., Sigmund, W., Zauscher, S. (eds) Handbook of Nanomaterials Properties. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31107-9_29

Download citation

Publish with us

Policies and ethics