Skip to main content

Metal Oxide Nanocrystals and Their Properties for Application in Solar Cells

  • Chapter
  • First Online:
Handbook of Nanomaterials Properties

Abstract

Metal oxides have been of interest in processing, synthesis, characterization, and fabrication in both polymer-inorganic hybrid and dye-sensitized solar cells. TiO2 [1–5], ZnO [6–9], CuO [10], and Nb2O5 [11] have been used as effective charge transport medium in solar cells. Different morphologies of these metal oxides have been synthesized for better charge transport across solar cells. These metal oxide nanostructures are chosen to provide large interfacial area and enhance charge transport across active layer. Metal oxide-based inorganic nanostructures can also improve environmental stability to cells, which is a major cause of degradation in cell performance. In this section, commonly used metal oxides (e.g., TiO2, ZnO, Nb2O5, and CuO) will be discussed for their role in fabrication of polymer solar cells.

Both Ashish Dubey and Jiantao Zai made equal contribution to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 629.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 799.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alparslan Z, Kosemen A, Ornek O et al (2011) TiO2-based organic hybrid solar cells withMn+2 doping. Int J Photoenergy

    Google Scholar 

  2. Breeze AJ, Schlesinger Z, Carter SA (2001) Charge transport in TiO2/MEH-PPV polymer photovoltaics. Phys Rev B 64(125205):1–9

    Google Scholar 

  3. Bouclé J, Chyla S, Shaffer MSP et al (2008) Hybrid solar cells from a blend of poly(3-hexylthiophene) and ligand-capped TiO2 nanorods. Adv Funct Mater 18(4):622–633

    Google Scholar 

  4. Chang C-H, Huang T-K, Lin Y-T et al (2008) Improved charge separation and transport efficiency in poly(3-hexylthiophene)–TiO2 nanorod bulk heterojunction solar cells. J Mater Chem 18(19):2201–2207

    Google Scholar 

  5. Liang S, Zhu G, Wenbin G, Chen T, Xindong Z, Caixia L, Weiyou C, Shengping R, Zhicheng Z (2008) Performance improvement of TiO2/P3HT solar cells using CuPc as a sensitizer. Appl Phys Lett 92(7):073307

    Google Scholar 

  6. Beek WJE, Slooff LH, Wienk MM et al (2005) Hybrid ZnO: polymer bulk heterojunction solar cells from a ZnO precursor. In: Organic photovoltaics VI. SPIE

    Google Scholar 

  7. Beek W, Wienk M, Janssen R (2006) Hybrid solar cells from regioregular polythiophene and ZnO nanoparticles. Adv Funct Mater 16(8):1112–1116

    Google Scholar 

  8. Beek WJE, Wienk MM, Janssen RAJ (2005) Hybrid bulk heterojunction solar cells: blends of ZnO semiconducting nanoparticles and conjugated polymers. In: Organic photovoltaics VI. SPIE

    Google Scholar 

  9. Kuwabara T, Kawahara Y, Yamaguchi T et al (2009) Characterization of inverted-type organic solar cells with a ZnO layer as the electron collection electrode by ac impedance spectroscopy. ACS Appl Mater Interfaces 1(10):2107–2110

    Google Scholar 

  10. Wang M, Xie F, Xie W et al (2011) Device lifetime improvement of polymer-based bulk heterojunction solar cells by incorporating copper oxide layer at Al cathode. Appl Phys Lett 98(18):183304

    Google Scholar 

  11. Siddiki MK, Venkatesan S, Qiao Q (2012) Nb2O5 as a new electron transport layer for double junction polymer solar cells. Phys Chem Chem Phys 14(14):4682–4686

    Google Scholar 

  12. Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 107(7):2891–2959

    Google Scholar 

  13. Chen H, Nanayakkara C, Grassian V (2012) Titanium dioxide photocatalysis in atmospheric chemistry. Chem Rev 112(11):5919–5948

    Google Scholar 

  14. Biswas P, Kundu S, Banerji P (2013) A study on electrical transport vis-a-vis the effect of thermal annealing on the p-type conductivity in arsenic-doped MOCVD grown ZnO in the temperature range 10–300 K. J Alloys Compd 552:304–309

    Google Scholar 

  15. Liu CY, Zhang BP, Binh NT et al (2006) Temperature dependence of structural and optical properties of ZnO films grown on Si substrates by MOCVD. J Cryst Growth 290(2):314–318

    Google Scholar 

  16. Pradhan SK, Reucroft PJ, Yang FQ et al (2003) Growth of TiO2 nanorods by metalorganic chemical vapor deposition. J Cryst Growth 256(1–2):83–88

    Google Scholar 

  17. Liu B, Hu Z, Che Y et al (2008) Growth of ZnO nanoparticles and nanorods with ultrafast pulsed laser deposition. Appl Phys A Mater Sci Process 93(3):813–818

    Google Scholar 

  18. Limmer SJ, Seraji S, Wu Y et al (2002) Template-based growth of various oxide nanorods by sol-gel electrophoresis. Adv Funct Mater 12(1):59–64

    Google Scholar 

  19. Antonelli DM, Ying JY (1995) Synthesis of hexagonally packed mesoporous TiO2 by a modified sol-gel method. Angew Chem Int Ed 34(18):2014–2017

    Google Scholar 

  20. Lakshmi BB, Patrissi CJ, Martin CR (1997) Sol-gel template synthesis of semiconductor oxide micro- and nanostructures. Chem Mater 9(11):2544–2550

    Google Scholar 

  21. Yanan F, Zhengguo J, Weijiang X et al (2008) Ordered macro-mesoporous nc-TiO2 films by sol-gel method using polystyrene array and triblock copolymer bitemplate. J Am Ceram Soc 91(8):2676–2682

    Google Scholar 

  22. Spanhel L, Anderson MA (1991) Semiconductor clusters in the sol-gel process: quantized aggregation, gelation, and crystal growth in concentrated zinc oxide colloids. J Am Chem Soc 113(8):2826–2833

    Google Scholar 

  23. Rahnama A, Gharagozlou M (2012) Preparation and properties of semiconductor CuO nanoparticles via a simple precipitation method at different reaction temperatures. Opt Quant Electron 44(6–7):313–322

    Google Scholar 

  24. Bavykin DV, Parmon VN, Lapkin AA et al (2004) The effect of hydrothermal conditions on the mesoporous structure of TiO2 nanotubes. J Mater Chem 14(22):3370–3377

    Google Scholar 

  25. Andersson M, Osterlund L, Ljungstrom S et al (2002) Preparation of nanosize anatase and rutile TiO2 by hydrothermal treatment of microemulsions and their activity for photocatalytic wet oxidation of phenol. J Phys Chem B 106(41):10674–10679

    Google Scholar 

  26. Wu MM, Long JB, Huang AH et al (1999) Microemulsion-mediated hydrothermal synthesis and characterization of nanosize rutile and anatase particles. Langmuir 15(26):8822–8825

    Google Scholar 

  27. Guixiang D, Lidong Z, Yan F et al (2012) Controllable synthesis of ZnO architectures by a surfactant-free hydrothermal process. Mater Lett 73:86–88

    Google Scholar 

  28. Yang J, Mei S, Ferreira JMF (2001) Hydrothermal synthesis of TiO2 nanopowders from tetraalkylammonium hydroxide peptized sols. Mater Sci Eng C-Biomimetic Supramol Syst 15(1–2):183–185

    Google Scholar 

  29. Patil KC, Aruna ST, Ekambaram S (1997) Combustion synthesis. Curr Opin Solid State Mater Sci 2(2):158–165

    Google Scholar 

  30. Nagaveni K, Hegde MS, Madras G (2004) Structure and photocatalytic activity of Ti1−xMxO2±δ (M = W, V, Ce, Zr, Fe, and Cu) synthesized by solution combustion method. J Phys Chem B 108(52):20204–20212

    Google Scholar 

  31. Jimenez-Gonzalez AE, Urueta JAS, Suarez-Parra R (1998) Optical and electrical characteristics of aluminum-doped ZnO thin films prepared by solgel technique. J Cryst Growth 192(3–4):430–438

    Google Scholar 

  32. Cong Y, Zhang J, Chen F et al (2007) Synthesis and characterization of nitrogen-doped TiO2 nanophotocatalyst with high visible light activity. J Phys Chem C 111(19):6976–6982

    Google Scholar 

  33. Elias J, Levy-Clement C, Bechelany M et al (2010) Hollow Urchin-like ZnO thin films by electrochemical deposition. Adv Mater 22(14):1607–+

    Google Scholar 

  34. Roy P, Berger S, Schmuki P (2011) TiO2 nanotubes: synthesis and applications. Angew Chem Int Ed 50(13):2904–2939

    Google Scholar 

  35. Kong M, Zhang W, Yang Z et al (2011) Facile synthesis of CuO hollow nanospheres assembled by nanoparticles and their electrochemical performance. Appl Surf Sci 258(4):1317–1321

    Google Scholar 

  36. Kafi AKM, Wu G, Chen A (2008) A novel hydrogen peroxide biosensor based on the immobilization of horseradish peroxidase onto Au-modified titanium dioxide nanotube arrays. Biosens Bioelectron 24(4):566–571

    Google Scholar 

  37. Izaki M, Watanabe M, Aritomo H et al (2008) Zinc oxide nano-cauliflower array with room temperature ultraviolet light emission. Cryst Growth Des 8(4):1418–1421

    Google Scholar 

  38. Xu J, Yang X, Yang QD et al (2012) Arrays of CdSe sensitized ZnO/ZnSe nanocables for efficient solar cells with high open-circuit voltage. J Mater Chem 22(26):13374–13379

    Google Scholar 

  39. Sakthivel S, Janczarek M, Kisch H (2004) Visible light activity and photoelectrochemical properties of nitrogen-doped TiO2. J Phys Chem B 108(50):19384–19387

    Google Scholar 

  40. Zhang X, Wang G, Zhang W et al (2008) Seed-mediated growth method for epitaxial array of CuO nanowires on surface of Cu nanostructures and its application as a glucose sensor. J Phys Chem C 112(24):8856–8862

    Google Scholar 

  41. Kongkanand A, Tvrdy K, Takechi K et al (2008) Quantum dot solar cells. Tuning photoresponse through size and shape control of CdSe-TiO2 architecture. J Am Chem Soc 130(12):4007–4015

    Google Scholar 

  42. Cho IS, Chen Z, Forman AJ et al (2011) Branched TiO2 nanorods for photoelectrochemical hydrogen production. Nano Lett 11(11):4978–4984

    Google Scholar 

  43. Zhang Z, Zhang L, Hedhili M et al (2013) Plasmonic gold nanocrystals coupled with photonic crystal seamlessly on TiO2 nanotube photoelectrodes for efficient visible light photoelectrochemical water splitting. Nano Lett 13(1):14–20

    Google Scholar 

  44. Zhu K, Neale NR, Miedaner A et al (2007) Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays. Nano Lett 7(1):69–74

    Google Scholar 

  45. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238(5358):37–38

    Google Scholar 

  46. Zeng HB, Cui JB, Cao BQ et al (2010) Electrochemical deposition of ZnO nanowire arrays: organization, doping, and properties. Sci Adv Mater 2(3):336–358

    Google Scholar 

  47. Fujishima A, Zhang X, Tryk DA (2008) TiO2 photocatalysis and related surface phenomena. Surf Sci Rep 63(12):515–582

    Google Scholar 

  48. Inoue T, Fujishima A, Konishi S et al (1979) Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature 277(5698):637–638

    Google Scholar 

  49. Law M, Greene LE, Johnson JC et al (2005) Nanowire dye-sensitized solar cells. Nat Mater 4(6):455–459

    Google Scholar 

  50. O’Regan B, Gratzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353(6346):737–740

    Google Scholar 

  51. Senthilarasu S, Peiris TAN, Jorge G-C et al (2012) Preparation of nanocrystalline TiO2 electrodes for flexible dye-sensitized solar cells: influence of mechanical compression. J Phys Chem C 116:19053–19061

    Google Scholar 

  52. Bao S-J, Li CM, Zang J-F et al (2008) New nanostructured TiO2 for direct electrochemistry and glucose sensor applications. Adv Funct Mater 18(4):591–599

    Google Scholar 

  53. Sakthivel S, Kisch H (2003) Daylight photocatalysis by carbon-modified titanium dioxide. Angew Chem Int Ed 42(40):4908–4911

    Google Scholar 

  54. Su W, Zhang Y, Li Z et al (2008) Multivalency iodine doped TiO2: preparation, characterization, theoretical studies, and visible-light photocatalysis. Langmuir 24(7):3422–3428

    Google Scholar 

  55. Varley J, Janotti A, Van de Walle C (2011) Mechanism of visible-light photocatalysis in nitrogen-doped TiO2. Adv Mater 23(20):2343–2347

    Google Scholar 

  56. Li Z, Zhang H, Zheng W et al (2008) Highly sensitive and stable humidity nanosensors based on LiCl doped TiO2 electrospun nanofibers . J Am Chem Soc 130(15):5036–+

    Google Scholar 

  57. Lu C, Chen Z (2009) High-temperature resistive hydrogen sensor based on thin nanoporous rutile TiO(2) film on anodic aluminum oxide. Sensor Actuat B-chem 140(1):109–115

    Google Scholar 

  58. Lu HF, Li F, Liu G et al (2008) Amorphous TiO(2) nanotube arrays for low-temperature oxygen sensors. Nanotechnology 19(40)

    Google Scholar 

  59. Yang L, Luo S, Cai Q et al (2010) A review on TiO2 nanotube arrays: fabrication, properties, and sensing applications. Chin Sci Bull 55(4–5):331–338

    Google Scholar 

  60. Zhang Y, Fu W, Yang H et al (2008) Synthesis and characterization of TiO(2) nanotubes for humidity sensing. Appl Surf Sci 254(17):5545–5547

    Google Scholar 

  61. Kim JY, Kim SH, Lee HH et al (2006) New architecture for high-efficiency polymer photovoltaic cells using solution-based titanium oxide as an optical spacer . Adv Mater 18(5):572–+

    Google Scholar 

  62. Kokubo T, Kim HM, Kawashita M (2003) Novel bioactive materials with different mechanical properties. Biomaterials 24(13):2161–2175

    Google Scholar 

  63. Chae SY, Park MK, Lee SK et al (2003) Preparation of size-controlled TiO2 nanoparticles and derivation of optically transparent photocatalytic films. Chem Mater 15(17):3326–3331

    Google Scholar 

  64. Yu JC, Yu JG, Ho WK et al (2002) Effects of F-doping on the photocatalytic activity and microstructures of nanocrystalline TiO2 powders. Chem Mater 14(9):3808–3816

    Google Scholar 

  65. Carp O, Huisman CL, Reller A (2004) Photoinduced reactivity of titanium dioxide. Prog Solid State Chem 32(1–2):33–177

    Google Scholar 

  66. Cot F, Larbot A, Nabias G et al (1998) Preparation and characterization of colloidal solution derived crystallized titania powder. J Eur Ceram Soc 18(14):2175–2181

    Google Scholar 

  67. Pinna N, Niederberger M (2008) Surfactant-free nonaqueous synthesis of metal oxide nanostructures. Angew Chem Int Ed 47(29):5292–5304

    Google Scholar 

  68. Li XL, Peng Q, Yi JX et al (2006) Near monodisperse TiO2 nanoparticles and nanorods. Chem Eur J 12(8):2383–2391

    Google Scholar 

  69. Shah SI, Li W, Huang CP et al (2002) Study of Nd3+, Pd2+, Pt4+, and Fe3+ dopant effect on photoreactivity of TiO2 nanoparticles. Proc Natl Acad Sci USA 99:6482–6486

    Google Scholar 

  70. Chen C-A, Chen Y-M, Huang Y-S et al (2009) Synthesis and characterization of well-aligned anatase TiO2 nanocrystals on fused silica via metal-organic vapor deposition. Cryst Eng Comm 11(11):2313–2318

    Google Scholar 

  71. Yang HG, Sun CH, Qiao SZ et al (2008) Anatase TiO(2) single crystals with a large percentage of reactive facets. Nature 453(7195):638-U4

    Google Scholar 

  72. Li GS, Li LP, Boerio-Goates J et al (2005) High purity anatase TiO2 nanocrystals: near room-temperature synthesis, grain growth kinetics, and surface hydration chemistry. J Am Chem Soc 127(24):8659–8666

    Google Scholar 

  73. Burnside SD, Shklover V, Barbe C et al (1998) Self-organization of TiO2 nanoparticles in thin films. Chem Mater 10(9):2419–2425

    Google Scholar 

  74. Sugimoto T, Zhou XP, Muramatsu A (2003) Synthesis of uniform anatase TiO2 nanoparticles by gel-sol method 3. Formation process and size control. J Colloid Interface Sci 259(1):43–52

    Google Scholar 

  75. Sugimoto T, Zhou XP, Muramatsu A (2003) Synthesis of uniform anatase TiO2 nanoparticles by gel-sol method 4. Shape control. J Colloid Interface Sci 259(1):53–61

    Google Scholar 

  76. Sugimoto T, Zhou XP, Muramatsu A (2002) Synthesis of uniform anatase TiO2 nanoparticles by gel-sol method – 1. Solution chemistry of Ti(OH)(n)((4-n)+) complexes. J Colloid Interface Sci 252(2):339–346

    Google Scholar 

  77. Sugimoto T, Zhou XP (2002) Synthesis of uniform anatase TiO2 nanoparticles by the gel-sol method – 2. Adsorption of OH- ions to Ti(OH)(4) gel and TiO2 particles. J Colloid Interface Sci 252(2):347–353

    Google Scholar 

  78. Sugimoto T, Okada K, Itoh H (1997) Synthesis of uniform spindle-type titania particles by the gel-sol method. J Colloid Interface Sci 193(1):140–143

    Google Scholar 

  79. Fu G, Vary P, Lin C-T (2005) Anatase TiO2 nanocomposites for antimicrobial coatings. J Phys Chem B 109(18):8889–8898

    Google Scholar 

  80. Kasuga T, Hiramatsu M, Hoson A et al (1998) Formation of titanium oxide nanotube. Langmuir 14(12):3160–3163

    Google Scholar 

  81. Zhong ZY, Yin YD, Gates B et al (2000) Preparation of mesoscale hollow spheres of TiO2 and SnO2 by templating against crystalline arrays of polystyrene beads. Adv Mater 12(3):206–+

    Google Scholar 

  82. Qiao QQ, McLeskey JT (2005) Water-soluble polythiophene/nanocrystalline TiO2 solar cells. Appl Phys Lett 86(15):153501

    Google Scholar 

  83. Xu T, Yan M, Hoefelmeyer JD et al (2012) Exciton migration and charge transfer in chemically linked P3HT-TiO2 nanorod composite. RSC Adv 2(3):854–862

    Google Scholar 

  84. Kang SH, Choi S-H, Kang M-S et al (2008) Nanorod-based dye-sensitized solar cells with improved charge collection efficiency . Adv Mater 20(1):54–+

    Google Scholar 

  85. Cozzoli PD, Kornowski A, Weller H (2003) Low-temperature synthesis of soluble and processable organic-capped anatase TiO2 nanorods. J Am Chem Soc 125(47):14539–14548

    Google Scholar 

  86. Wu J-M (2004) Low-temperature preparation of titania nanorods through direct oxidation of titanium with hydrogen peroxide. J Cryst Growth 269(2–4):347–355

    Google Scholar 

  87. Liu B, Aydil ES (2009) Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cells. J Am Chem Soc 131(11):3985–3990

    Google Scholar 

  88. Hoyer P (1996) Formation of a titanium dioxide nanotube array. Langmuir 12(6):1411–1413

    Google Scholar 

  89. Daoai W, Tianchang H, Litian H et al (2009) Microstructured arrays of TiO2 nanotubes for improved photo-electrocatalysis and mechanical stability. Adv Funct Mater 19

    Google Scholar 

  90. Tsai C, Teng H (2006) Structural features of nanotubes synthesized from NaOH treatment on TiO2 with different post-treatments. Chem. Mater 18(2):367–373

    Google Scholar 

  91. Lan Y, Gao XP, Zhu HY et al (2005) Titanate nanotubes and nanorods prepared from rutile powder. Adv Funct Mater 15(8):1310–1318

    Google Scholar 

  92. Tian ZRR, Voigt JA, Liu J et al (2003) Large oriented arrays and continuous films of TiO2-based nanotubes. J Am Chem Soc 125(41):12384–12385

    Google Scholar 

  93. Macak JM, Tsuchiya H, Schmuki P (2005) High-aspect-ratio TiO2 nanotubes by anodization of titanium. Angew Chem Int Ed 44(14):2100–2102

    Google Scholar 

  94. Jan MM, Cordt Z, Brian JR et al (2009) Ordered ferroelectric lead titanate nanocellular structure by conversion of anodic TiO2 nanotubes. Adv Mater 21:3121–3125

    Google Scholar 

  95. Mor GK, Shankar K, Paulose M et al (2006) Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells. Nano Lett 6(2):215–218

    Google Scholar 

  96. Bavykin DV, Friedrich JM, Walsh FC (2006) Protonated titanates and TiO2 nanostructured materials: synthesis, properties, and applications. Adv Mater 18(21):2807–2824

    Google Scholar 

  97. Yuan ZY, Zhou WZ, Su BL (2002) Hierarchical interlinked structure of titanium oxide nanofibers. Chem Commun 2(11):1202–1203

    Google Scholar 

  98. Joshi P, Zhang L, Davoux D et al (2010) Composite of TiO2 nanofibers and nanoparticles for dye-sensitized solar cells with significantly improved efficiency. Energy Environ Sci 3(10):1507–1510

    Google Scholar 

  99. Qidong T, Xingzhong Z, Feng Y (2010) Hybrid solar cells based on poly(3-hexylthiophene) and electrospun TiO2 nanofibers with effective interface modification. J Mater Chem 20:7366–7371

    Google Scholar 

  100. Drew C, Liu X, Ziegler D et al (2003) Metal oxide-coated polymer nanofibers. Nano Lett 3(2):143–147

    Google Scholar 

  101. Li D, Xia YN (2003) Fabrication of titania nanofibers by electrospinning. Nano Lett 3(4):555–560

    Google Scholar 

  102. Li D, Xia YN (2003) Rapid fabrication of titania nanofibers by electrospinning. In: Cao G, Xia Y, Braun PV (eds) Nanomaterials and their optical applications. pp 17–24

    Google Scholar 

  103. Choi W, Termin A, Hoffmann MR (1994) The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics. J Phys Chem 98(51):13669–13679

    Google Scholar 

  104. Gole JL, Stout JD, Burda C et al (2003) Highly efficient formation of visible light tunable TiO2-xNx photocatalysts and their transformation at the nanoscale. J Phys Chem B 108(4):1230–1240

    Google Scholar 

  105. Park JH, Kim S, Bard AJ (2005) Novel carbon-doped TiO2 nanotube arrays with high aspect ratios for efficient solar water splitting. Nano Lett 6(1):24–28

    Google Scholar 

  106. Burda C, Lou Y, Chen X et al (2003) Enhanced nitrogen doping in TiO2 nanoparticles. Nano Lett 3(8):1049–1051

    Google Scholar 

  107. Ohno T (2004) Preparation of visible light active S-doped TiO2 photocatalysts and their photocatalytic activities. Water Sci Technol 49(4):159–163

    Google Scholar 

  108. Luo H, Takata T, Lee Y et al (2004) Photocatalytic activity enhancing for titanium dioxide by co-doping with bromine and chlorine. Chem Mater 16(5):846–849

    Google Scholar 

  109. Hsieh CY, Lu ML, Chen JY et al (2012) Single ZnO nanowire-PZT optothermal field effect transistors. Nanotechnology 23(35)

    Google Scholar 

  110. Yang M, Kim HC, Hong SH (2012) DMMP gas sensing behavior of ZnO-coated single-wall carbon nanotube network sensors. Mater Lett 89:312–315

    Google Scholar 

  111. Xu CK, Wu JM, Desai UV et al (2012) High-efficiency solid-state dye-sensitized solar cells based on TiO2-coated ZnO nanowire arrays. Nano Lett 12(5):2420–2424

    Google Scholar 

  112. Tingting X, Qiquan Q (2011) Conjugated polymer–inorganic semiconductor hybrid solar cells . Energy Environ Sci 4:2700–2720

    Google Scholar 

  113. Shangke P, Tingting X, Swaminathan V et al (2012) Direct growth of CdSe nanorods on ITO substrates by co-anchoring of ZnO nanoparticles and ethylenediamine. J Nanopart Res 14:1115

    Google Scholar 

  114. Xie Y, Joshi P, Darling SB et al (2010) Electrolyte effects on electron transport and recombination at ZnO nanorods for dye-sensitized solar cells. J Phys Chem C 114(41):17880–17888

    Google Scholar 

  115. Tingting X, Swaminathan V, David G et al (2013) Study of polymer/ZnO nanostructure interfaces by Kelvin probe force microscopy . Sol Energy Mater Sol Cells 108:246–251

    Google Scholar 

  116. Afsal M, Wang CY, Chu LW et al (2012) Highly sensitive metal-insulator-semiconductor UV photodetectors based on ZnO/SiO2 core-shell nanowires. J Mater Chem 22(17):8420–8425

    Google Scholar 

  117. Gao PX, Song JH, Liu J et al (2007) Nanowire piezoelectric nanogenerators on plastic substrates as flexible power sources for nanodevices. Adv Mater 19(1):67–+

    Google Scholar 

  118. Soomro MY, Hussain I, Bano N et al (2012) Piezoelectric power generation from zinc oxide nanowires grown on paper substrate. Phys Status Solidi-R 6(2):80–82

    Google Scholar 

  119. Kawano T, Imai H (2010) Nanoscale morphological design of ZnO crystals grown in aqueous solutions. J Ceram Soc Jpn 118(1383):969–976

    Google Scholar 

  120. Wang XD, Summers CJ, Wang ZL (2004) Large-scale hexagonal-patterned growth of aligned ZnO nanorods for nano-optoelectronics and nanosensor arrays. Nano Lett 4(3):423–426

    Google Scholar 

  121. Chen JJ, Gao Y, Zeng F et al (2004) Effect of sputtering oxygen partial pressures on structure and physical properties of high resistivity ZnO films. Appl Surf Sci 223(4):318–329

    Google Scholar 

  122. Hu Z, Oskam G, Searson PC (2003) Influence of solvent on the growth of ZnO nanoparticles. J Colloid Interface Sci 263(2):454–460

    Google Scholar 

  123. Yadav RS, Mishra P, Pandey AC (2008) Growth mechanism and optical property of ZnO nanoparticles synthesized by sonochemical method. Ultrason Sonochem 15(5):863–868

    Google Scholar 

  124. Kawano T, Imai H (2006) Fabrication of ZnO nanoparticles with various aspect ratios through acidic and basic routes. Cryst Growth Des 6(4):1054–1056

    Google Scholar 

  125. Distaso M, Klupp Taylor RN, Taccardi N et al (2011) Influence of the counterion on the synthesis of ZnO mesocrystals under solvothermal conditions. Chemistry 17(10):2923–2930

    Google Scholar 

  126. Jézéquel D, Guenot J, Jouini N et al (1995) Submicrometer zinc oxide particles: elaboration in polyol medium and morphological characteristics. J Mater Res 10(01):77–83

    Google Scholar 

  127. Zhang Q, Chou T, Russo B et al (2008) Aggregation of ZnO nanocrystallites for high conversion efficiency in dye-sensitized solar cells. Angew Chem Int Ed 47(13):2402–2406

    Google Scholar 

  128. Shinde SS, Korade AP, Bhosale CH et al (2013) Influence of tin doping onto structural, morphological, optoelectronic and impedance properties of sprayed ZnO thin films. J Alloys Compd 551:688–693

    Google Scholar 

  129. Chen Y-Y, Hsu J-C, Lee C-Y et al (2013) Influence of oxygen partial pressure on structural, electrical, and optical properties of Al-doped ZnO film prepared by the ion beam co-sputtering method. J Mater Sci 48(3):1225–1230

    Google Scholar 

  130. Ramgir NS, Late DJ, Bhise AB et al (2006) ZnO multipods, submicron wires, and spherical structures and their unique field emission behavior. J Phys Chem B 110(37):18236–18242

    Google Scholar 

  131. Ng HT, Chen B, Li J et al (2003) Optical properties of single-crystalline ZnO nanowires on m-sapphire. Appl Phys Lett 82(13):2023–2025

    Google Scholar 

  132. Lee WN, Jeong MC, Myoung JM (2004) Fabrication and application potential of ZnO nanowires grown on GaAs(002) substrates by metal-organic chemical vapour deposition. Nanotechnology 15(3):254–259

    Google Scholar 

  133. Ramsdale CM, Greenham NC (2002) Ellipsometric determination of anisotropic optical constants in electroluminescent conjugated polymers . Adv Mater 14(3):212–+

    Google Scholar 

  134. Vayssieres L (2003) Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions. Adv Mater 15(5):464–466

    Google Scholar 

  135. Greene LE, Law M, Tan DH et al (2005) General route to vertical ZnO nanowire arrays using textured ZnO seeds. Nano Lett 5(7):1231–1236

    Google Scholar 

  136. Xu TT, Chen QL, Lin DH et al (2011) Self-assembled thienylsilane molecule as interfacial layer for ZnO nanowire/polymer hybrid system. J Photonics Energy 1(1):011107

    Google Scholar 

  137. Hu P, Liu YQ, Wang XB et al (2003) Tower-like structure of ZnO nanocolumns. Chem Commun 3(11):1304–1305

    Google Scholar 

  138. Wang Z, Qian XF, Yin J et al (2004) Large-scale fabrication of tower-like, flower-like, and tube-like ZnO arrays by a simple chemical solution route. Langmuir 20(8):3441–3448

    Google Scholar 

  139. Liang Y, Zhang X, Qin L et al (2006) Ga-assisted synthesis and optical properties of ZnO submicron- and nanotowers. J Phys Chem B 110(43):21593–21595

    Google Scholar 

  140. Xiao J, Zhang X, Zhang G (2008) Field emission from zinc oxide nanotowers: the role of the top morphology . Nanotechnology 19(29):295706

    Google Scholar 

  141. Wang F, Cao L, Pan A et al (2007) Synthesis of tower-like ZnO structures and visible photoluminescence origins of varied-shaped ZnO nanostructures. J Phys Chem C 111(21):7655–7660

    Google Scholar 

  142. Wang WW, Zhu YJ (2004) Shape-controlled synthesis of zinc oxide by microwave heating using an imidazolium salt. Inorg Chem Commun 7(9):1003–1005

    Google Scholar 

  143. Gao XD, Li XM, Yu WD (2005) Flowerlike ZnO nanostructures via hexamethylenetetramine-assisted thermolysis of zinc-ethylenediamine complex. J Phys Chem B 109(3):1155–1161

    Google Scholar 

  144. Umetsu M, Mizuta M, Tsumoto K et al (2005) Bioassisted room-temperature immobilization and mineralization of zinc oxide – the structural ordering of ZnO nanoparticles into a flower-type morphology . Adv Mater 17(21):2571–+

    Google Scholar 

  145. Li P, Liu H, Zhang Y-F et al (2007) Synthesis of flower-like ZnO microstructures via a simple solution route. Mater Chem Phys 106(1):63–69

    Google Scholar 

  146. Wahab R, Ansari SG, Kim YS et al (2007) Low temperature solution synthesis and characterization of ZnO nano-flowers. Mater Res Bull 42(9):1640–1648

    Google Scholar 

  147. Peng WQ, Qu SC, Cong GW et al (2006) Synthesis and structures of morphology-controlled ZnO nano- and microcrystals. Cryst Growth Des 6(6):1518–1522

    Google Scholar 

  148. Xie Q, Dai Z, Liang HB et al (2005) Synthesis of ZnO three-dimensional architectures and their optical properties. Solid State Commun 136(5):304–307

    Google Scholar 

  149. Sun F, Qiao X, Tan F et al (2012) Fabrication and photocatalytic activities of ZnO arrays with different nanostructures. Appl Surf Sci 263:704–711

    Google Scholar 

  150. Fang Z, Tang K, Shen G et al (2006) Self-assembled ZnO 3D flowerlike nanostructures. Mater Lett 60(20):2530–2533

    Google Scholar 

  151. Ye CH, Fang XS, Hao YF et al (2005) Zinc oxide nanostructures: Morphology derivation and evolution. J Phys Chem B 109(42):19758–19765

    Google Scholar 

  152. Ozgur U, Alivov YI, Liu C et al (2005) A comprehensive review of ZnO materials and devices. J Appl Phys 98(4):41301

    Google Scholar 

  153. Tran VT, Shinya M (2010) Synthesis of high-quality Al-doped ZnO nanoink . J Appl Phys 107:014308

    Google Scholar 

  154. Pearton SJ, Heo WH, Ivill M et al (2004) Dilute magnetic semiconducting oxides. Semicond Sci Technol 19(10):R59–R74

    Google Scholar 

  155. Park CH, Zhang SB, Wei SH (2002) Origin of p-type doping difficulty in ZnO: the impurity perspective . Phys Rev B 66(7):073202(1-3)

    Google Scholar 

  156. Matsumoto Y, Murakami M, Jin ZW et al (1999) Combinatorial laser molecular beam epitaxy (MBE) growth of Mg-Zn-O alloy for band gap engineering. Jpn J Appl Phys Part 2 38(6AB):L603–L605

    Google Scholar 

  157. Liu W-S, Chen W-K, Hsueh K-P (2013) Transparent conductive Ga-doped MgxZn1-xO films with high optical transmittance prepared by radio frequency magnetron sputtering. J Alloys Compd 552:255–263

    Google Scholar 

  158. Wan Q, Li QH, Chen YJ et al (2004) Positive temperature coefficient resistance and humidity sensing properties of Cd-doped ZnO nanowires. Appl Phys Lett 84(16):3085–3087

    Google Scholar 

  159. Wang YS, Thomas PJ, O’Brien P (2006) Optical properties of ZnO nanocrystals doped with Cd, Mg, Mn, and Fe ions. J Phys Chem B 110(43):21412–21415

    Google Scholar 

  160. Fernandes GE, Lee D-J, Kim JH et al (2013) Infrared and microwave shielding of transparent Al-doped ZnO superlattice grown via atomic layer deposition. J Mater Sci 48(6):2536–2542

    Google Scholar 

  161. Kumar S, Chen CL, Dong CL et al (2013) Structural, optical, and magnetic characterization of Co and N co-doped ZnO nanopowders. J Mater Sci 48(6):2618–2623

    Google Scholar 

  162. Zhou Y, Qiu Z, Lü M et al (2008) Preparation and characterization of porous Nb2O5 nanoparticles. Mater Res Bull 43(6):1363–1368

    Google Scholar 

  163. Uekawa N, Kudo T, Mori F et al (2003) Low-temperature synthesis of niobium oxide nanoparticles from peroxo niobic acid sol. J Colloid Interface Sci 264(2):378–384

    Google Scholar 

  164. Buha J, Arcon D, Niederberger M et al (2010) Solvothermal and surfactant-free synthesis of crystalline Nb2O5, Ta2O5, HfO2, and Co-doped HfO2 nanoparticles. Phys Chem Chem Phys 12(47):15537–15543

    Google Scholar 

  165. Suramwar NV, Thakare SR, Karade NN et al (2012) Green synthesis of predominant (1 1 1) facet CuO nanoparticles: Heterogeneous and recyclable catalyst for N-arylation of indoles. J Mol Catal A Chem 359:28–34

    Google Scholar 

  166. Liu S, Tian J, Wang L et al (2012) A simple route for preparation of highly stable CuO nanoparticles for nonenzymatic glucose detection. Catal Sci Technol 2(4):813–817

    Google Scholar 

  167. Wang H, Xu J-Z, Zhu J-J et al (2002) Preparation of CuO nanoparticles by microwave irradiation. J Cryst Growth 244(1):88–94

    Google Scholar 

  168. Applerot G, Lellouche J, Lipovsky A et al (2012) Understanding the antibacterial mechanism of CuO nanoparticles: revealing the route of induced oxidative stress. Small 8(21):3326–3337

    Google Scholar 

  169. Vidyasagar CC, Naik YA, Venkatesh TG et al (2011) Solid-state synthesis and effect of temperature on optical properties of Cu–ZnO, Cu–CdO and CuO nanoparticles. Powder Technol 214(3):337–343

    Google Scholar 

  170. Sun L, Zhang Z, Wang Z et al (2005) Synthesis and characterization of CuO nanoparticles from liquid ammonia. Mater Res Bull 40(6):1024–1027

    Google Scholar 

  171. Premkumar T, Geckeler KE (2006) A green approach to fabricate CuO nanoparticles. J Phys Chem Solids 67(7):1451–1456

    Google Scholar 

  172. Liu B, Zeng HC (2004) Mesoscale organization of CuO nanoribbons: formation of “dandelions”. J Am Chem Soc 126(26):8124–8125

    Google Scholar 

  173. Chang Y, Teo JJ, Zeng HC (2004) Formation of colloidal CuO nanocrystallites and their spherical aggregation and reductive transformation to hollow Cu2O nanospheres. Langmuir 21(3):1074–1079

    Google Scholar 

  174. Zhu J, Qian X (2010) From 2-D CuO nanosheets to 3-D hollow nanospheres: interface-assisted synthesis, surface photovoltage properties and photocatalytic activity. J Solid State Che 183(7):1632–1639

    Google Scholar 

  175. Park JC, Kim J, Kwon H et al (2009) Gram-scale synthesis of Cu2O nanocubes and subsequent oxidation to CuO hollow nanostructures for lithium-ion battery anode materials. Adv Mater 21(7):803–807

    Google Scholar 

  176. Cheng S-L, Chen M-F (2012) Fabrication, characterization, and kinetic study of vertical single-crystalline CuO nanowires on Si substrates. Nanoscale Res Lett 7(1):119

    Google Scholar 

  177. Jiang X, Herricks T, Xia Y (2002) CuO nanowires can be synthesized by heating copper substrates in air. Nano Lett 2(12):1333–1338

    Google Scholar 

  178. Hansen BJ, Kouklin N, Lu G et al (2010) Transport, Analyte detection, and opto-electronic response of p-type CuO nanowires. J Phys Chem C 114(6):2440–2447

    Google Scholar 

  179. Hansen BJ, Lu G, Chen J (2008) Direct oxidation growth of CuO nanowires from copper-containing substrates. J Nanomater 2008:1–7

    Google Scholar 

  180. Umar AA, Oyama M (2007) A seed-mediated growth method for vertical array of single-crystalline CuO nanowires on surfaces. Cryst Growth Des 7(12):2404–2409

    Google Scholar 

  181. Siddiki M, Li J, Galipeau D et al (2010) A review on polymer multijunction solar cells. Energy Environ Sci 3:867–883

    Google Scholar 

  182. Siddiki MK, Venkatesan S, Galipeau D et al (2013) Kelvin probe force microscopic imaging of the energy barrier and energetically favorable offset of interfaces in double-junction organic solar cells. ACS Appl Mater Interfaces 5(4):1279–1286

    Google Scholar 

  183. Siddiki MK, Venkatesan S, Wang M et al (2013) Materials and devices design for efficient double junction polymer solar cells. Sol Energy Mater Sol Cells 108:225–229

    Google Scholar 

  184. Taranekar P, Qiao Q, Jiang J et al (2007) Hyperbranched conjugated polyelectrolyte bilayers for solar cell applications. J Am Chem Soc 129(29):8958–8959

    Google Scholar 

  185. Xie Y, Bao Y, Du J et al (2012) Understanding of morphology evolution in local aggregates and neighboring regions for organic photovoltaics. Phys Chem Chem Phys 14:10168–10177

    Google Scholar 

  186. Xie Y, Li Y, Xiao L et al (2010) Femtosecond time-resolved fluorescence study of P3HT/PCBM blend films. J Phys Chem C 114(34):14590–14600

    Google Scholar 

  187. Xu T, Chen Q, Lin D-H et al (2011) Self-assembled thienylsilane molecule as interfacial layer for ZnO nanowire/polymer hybrid system. J Photonics Energy 1(1):011107

    Google Scholar 

  188. Xu T, Qiao Q (2011) Conjugated polymer-inorganic semiconductor hybrid solar cells. Energy Environ Sci 4(8):2700–2720

    Google Scholar 

  189. Xu T, Venkatesan S, Galipeau D et al (2013) Study of polymer/ZnO nanostructure interfaces by kelvin probe force microscopy . Sol Energy Mater Sol Cells 108:246–251

    Google Scholar 

  190. Xu T, Yan M, Hoefelmeyer J et al (2011) Exciton migration and charge transfer in chemically linked P3HT-TiO2 nanorod composite. RSC Adv 2(3):854–862

    Google Scholar 

  191. Zhang W, Wang H, Chen B et al (2012) Oleamide as a self-assembled cathode buffer layer for polymer solar cells: the role of the terminal group on the function of the surfactant. J Mater Chem 22(45):24067–24074

    Google Scholar 

  192. Li J, Yan M, Xie Y et al (2011) Linker effects on optoelectronic properties of alternate donor–acceptor conjugated polymers. Energy Environ Sci 4:4276–4283

    Google Scholar 

  193. Shao S, Zheng K, Pullerits T et al (2012) Enhanced performance of inverted polymer solar cells by using poly(ethylene oxide)-modified ZnO as an electron transport layer. ACS Appl Mater Interfaces 5(2):380–385

    Google Scholar 

  194. Yunfei Zhou FSR, Yuan Y, Schleiermacher H-F, Niggemann M, Urban GA, Krüger M (2010) Improved efficiency of hybrid solar cells based on non-ligand-exchanged CdSe quantum dots and poly(3-hexylthiophene). Appl Phys Lett 96(1):013304

    Google Scholar 

  195. Yunfei Zhou ME, Veit C, Zimmermann B, Rauscher F, Niyamakom P, Yilmaz S, Dumsch I, Allard S, Scherf U, Krüger M (2011) Efficiency enhancement for bulk-heterojunction hybrid solar cells based on acid treated CdSe quantum dots and low bandgap polymer PCPDTBT. Sol Energy Mater Sol Cells 95(4):1232–1237

    Google Scholar 

  196. Kwong CY, Choy WCH, Djurisic AB et al (2004) Poly(3-hexylthiophene): TiO2 nanocomposites for solar cell applications. Nanotechnology 15(9):1156–1161

    Google Scholar 

  197. Qiao Q, Beck J, James J, McLeskey T (2005) Photovoltaic devices from self-doped polymers. In: Organic photovoltaics VI. SPIE

    Google Scholar 

  198. Qiao Q, Su L, Beck J et al (2005) Characteristics of water soluble polythiophene: TiO2 composite and its application in photovoltaics. J Appl Phys 98(10):094906

    Google Scholar 

  199. Qiao Q, Xie Y, McLeskey JJT (2008) Organic/inorganic polymer solar cells using a buffer layer from all-water-solution processing. J Phys Chem C 112(26):9912–9916

    Google Scholar 

  200. Yang P, Zhou X, Cao G et al (2010) P3HT:PCBM polymer solar cells with TiO2 nanotube aggregates in the active layer. J Mater Chem 20(13):2612–2616

    Google Scholar 

  201. Liao W-P, Hsu S-C, Lin W-H et al (2012) Hierarchical TiO2 nanostructured array/P3HT hybrid solar cells with interfacial modification. J Phys Chem C 116(30):15938–15945

    Google Scholar 

  202. Hau SK, Yip H-L, Baek NS et al (2008) Air-stable inverted flexible polymer solar cells using zinc oxide nanoparticles as an electron selective layer. Appl Phys Lett 92(25):253301–253303

    Google Scholar 

  203. Ka Y, Lee E, Park SY et al (2013) Effects of annealing temperature of aqueous solution-processed ZnO electron-selective layers on inverted polymer solar cells. Org Electron 14(1):100–104

    Google Scholar 

  204. Wiranwetchayan O, Liang Z, Zhang Q et al (2011) The role of oxide thin layer in inverted structure polymer solar cells. Mater Sci Appl 2:1697–1701

    Google Scholar 

Download references

Acknowledgement

This work was supported in part by NSF CAREER (ECCS-0950731), NSF EPSCoR (Grant No. 0903804), and the State of South Dakota, NASA EPSCoR (No. NNX13AD31A), 3 M Nontenured Faculty Award, and SDBoR CRGP grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiquan Qiao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dubey, A., Zai, J., Qian, X., Qiao, Q. (2014). Metal Oxide Nanocrystals and Their Properties for Application in Solar Cells. In: Bhushan, B., Luo, D., Schricker, S., Sigmund, W., Zauscher, S. (eds) Handbook of Nanomaterials Properties. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31107-9_28

Download citation

Publish with us

Policies and ethics