Skip to main content

Nanomaterials as Antimicrobial Agents

  • Chapter
  • First Online:
Handbook of Nanomaterials Properties

Abstract

With rapidly increasing resistance development against conventional antibiotics, there is an urgent need to identify novel approaches for combating infection. Given antimicrobial properties of various nanomaterials, as well as their capacity to carry drugs and related compounds, there is considerable current interest in the evaluation and application of such “nano-antibiotics.” Some of these systems are also addressable with light or magnetic fields, which offer additional opportunities to combat challenging pathogens, e.g., through localized heating or generation of oxidizing compounds. This chapter aims at providing some illustrative examples on principles and uses of antimicrobial nanomaterials, and how structural aspects of such materials translate into functional advantages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 629.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 799.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Coates ARM, Halls G, Hu Y (2011) Novel classes of antibiotics or more of the same? Br J Pharmacol 163:184–194

    Article  Google Scholar 

  2. Huh AJ, Kwon YJ (2011) “Nanoantibiotics”: a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. J Control Release 156:128–145

    Article  Google Scholar 

  3. Kenawy ER, Worley SD, Broughton R (2007) The chemistry and applications of antimicrobial polymers: a state-of-the-art review. Biomacromolecules 8:1359–1384

    Article  Google Scholar 

  4. Strömstedt AA, Ringstad L, Schmidtchen A, Malmsten M (2010) Interaction between amphiphilic peptides and phospholipid membranes. Curr Opin Colloid Interface Sci 15:467–478

    Article  Google Scholar 

  5. Malmsten M (2011) Antimicrobial and antiviral hydrogels. Soft Matter 7:8725–8736

    Article  Google Scholar 

  6. Malmsten M (2006) Soft drug delivery systems. Soft Matter 2:760–769

    Article  Google Scholar 

  7. du Toit LS, Pillay V, Choonara YE (2010) Nano-microbiocides: challenges in drug delivery, patient ethics, and intellectual property in the war against HIV/AIDS. Adv Drug Del Rev 62:532–546

    Article  Google Scholar 

  8. Scherlund M, Malmsten M, Holmqvist P, Brodin A (2000) Thermosetting microemulsions and mixed micellar solutions as drug delivery systems for periodontal anesthesia. Int J Pharm 194:103–116

    Article  Google Scholar 

  9. Esposito E, Carotta V, Scabbia A, Trombelli L, D’Antona P, Menegatti E, Nastruzzi C (1996) Comparative analysis of tetracycline-containing dental gels: poloxamer and monoglyceride-based formulations. Int J Pharm 142:9–23

    Article  Google Scholar 

  10. Chiappetta DA, Hocht C, Taira C, Sosnik A (2010) Efavirenz-loaded polymeric micelles for pediatric anti-HIV pharmacotherapy with significantly higher oral bioavailability. Nanomedicine 5:11–23

    Article  Google Scholar 

  11. Murguia MC, Cristaldi MD, Porto A, Di Conza J, Grau RJ (2008) Synthesis, surface-active properties, and antimicrobial activities of new neutral and cationic trimeric surfactants. J Surf Deterg 11:41–48

    Article  Google Scholar 

  12. Yang D, Pornpattananangkl D, Nakatsuji T, Chan M, Carson D, Huang CM, Zhang L (2009) The antimicrobial activity of liposomal lauric acids against Propionibacterium acnes. Biomaterials 30:6035–6040

    Article  Google Scholar 

  13. Huang CM, Chen CH, Pornananangkul D, Zhang L, Chan M, Hsieh MF, Zhang L (2011) Eradication of drug resistant Staphylococcus aureus by liposomal oleic acids. Biomaterials 32:214–221

    Article  Google Scholar 

  14. Sharma VK, Yngard RA, Lin Y (2009) Silver nanoparticles: green synthesis and their antimicrobial activities. Adv Colloid Interface Sci 145:83–96

    Article  Google Scholar 

  15. Elechiguerra JL, Burt JL, Morones JR, Camacho-Bragado A, Gao X, Lara HH, Yacaman MJ (2005) Interaction of silver nanoparticles with HIV-I. J Nanobiotechnol 3:1–10

    Article  Google Scholar 

  16. Silver S (2003) Bacterial silver resistance: molecular biology and uses and misuses of silver compounds. FEMS Microbiol Rev 27:341–353

    Article  Google Scholar 

  17. Thomas V, Yallapu MM, Sreedhar B, Bajpai SK (2007) A versatile strategy to fabricate hydrogel-silver nanocomposites and investigation of their antimicrobial activity. J Colloid Interface Sci 315:389–395

    Article  Google Scholar 

  18. Ozay O, Akcali A, Otkun MT, Silan C, Atkas N, Sahiner N (2010) P(4-VP) based nanoparticles and composites with dual action as antimicrobial materials. Colloids Surf B 79:460–466

    Article  Google Scholar 

  19. Marsich E, Travan A, Donati I, Di Luca A, Benincasa M, Crosera M, Paoletti S (2011) Biological response of hydrogels embedding gold nanoparticles. Colloids Surf B 83:331–339

    Article  Google Scholar 

  20. Zan X, Kozlov M, McCarthy TJ, Su Z (2011) Covalently attached, silver-doped poly(vinyl alcohol) hydrogel film on poly(L-lactic acid). Biomacromolecules 11:1082–1088

    Article  Google Scholar 

  21. Malmsten M (2013) Inorganic nanomaterials as delivery systems for proteins, peptides, DNA, and siRNA. Curr Opin Colloid Interface Sci 18(5):468–480

    Article  Google Scholar 

  22. Moriera dos Santos M, Joao Queiroz M, Baptista PV (2012) Enhancement of antibiotic effects via gold:silver-alloy nanoparticles. J Nanopart Res 14(859):1–8

    Google Scholar 

  23. Fan Z, Senapati D, Khan SA, Singh AK, Hamme A, Yust B, Sardar D, Ray PC (2013) Popcorn-shaped magnetic core-plasmonic shell multifunctional nanoparticles for the targeted magnetic separation and enrichment, label-free SERS imaging, and photothermal destruction of multidrug-resistant bacteria. Chem Eur J 19:2839–2847

    Article  Google Scholar 

  24. Kojic N, Pritchard EM, Tao H, Brenckle MA, Mondia JP, Panilatis B, Omenetto F, Kaplan DL (2012) Focal infection treatment using laser-mediated heating of injectable silk hydrogels with gold nanoparticles. Adv Funct Mater 22:3793–3798

    Article  Google Scholar 

  25. Baram N, Starosvetsky D, Starovetsky J, Epshtein M, Armon R, Ein-Eli Y (2011) Photocatalytic inactivation of microorganisms using nanotubular TiO2. Appl Catal B 101:212–219

    Article  Google Scholar 

  26. Chen WJ, Chen YC (2010) Fe3O4/TiO2 core/shell magnetic nanoparticle-based photokilling of pathogenic bacteria. Nanomedicine 5:1585–1593

    Article  Google Scholar 

  27. Schwegmann H, Feitz AJ, Frimmel FH (2010) Influence of the zeta potential on the sorption and toxicity of iron oxide nanoparticles on S. cerevisiae and E. Coli. J Colloid Interface Sci 347:43–48

    Article  Google Scholar 

  28. Fang X, Yu R, Li B, Somasundaran P, Chandran K (2010) Stresses exerted by ZnO, CeO2 and anastase TiO2 nanoparticles on the Nitrosomas europaea. J Colloid Interface Sci 348:329–334

    Article  Google Scholar 

  29. Hajipour MJ, Fromm KM, Ashkarran AA, de Aberasturi DJ, Ruiz de Larramendi I, Rojo T, Serpooshan V, Parak WJ, Mahmoudi M (2012) Antibacterial properties of nanoparticles. Trends Biotechnol 30:499–511

    Article  Google Scholar 

  30. Yuan W, Ji J, Fu J, Shen J (2008) A facile method to construct hybrid multilayered films as a strong and multifunctional antibacterial coating. J Biomed Mater Res B 85B:556–563

    Article  Google Scholar 

  31. Akhavan O (2009) Lasting antibacterial activities of Ag-TiO2/Ag/a-TiO2 nanocomposite thin film photocatalysts under solar lights irradiation. J Colloid Interface Sci 336:117–124

    Article  Google Scholar 

  32. Karunakaran C, Abiramasundari G, Gomathisankar P, Manikandan G, Anandi V (2010) Cu-doped TiO2 nanoparticles for photocatalytic disinfection of bacteria under visible light. J Colloid Interface Sci 352:68–74

    Article  Google Scholar 

  33. Yu TJ, Li PH, Tseng TW, Chen YC (2011) Multifunctional Fe3O4/alumina core/shell MNPs as photothermal agents for targeted hyperthermia of nosocomial and antibiotic-resistant bacteria. Nanomedicine 6:1353–1363

    Article  Google Scholar 

  34. Luo Z, Wu Q, Zhang M, Li P, Ding Y (2011) Cooperative antimicrobial activity of CdTe quantum dots with recephin and fluorescence menitoring for Escherichia coli. J Colloid Interface Sci 362:100–106

    Article  Google Scholar 

  35. Lu ZS, Li CM, Bao HF, Qiao Y, Bao QL (2009) Photophysical mechanism for quantum dots-induced bacterial growth inhibition. J Nanosci Nanotechnol 9:3252–3255

    Article  Google Scholar 

  36. Geraldo DA, Arancibia-Miranda N, Villagra NA, Mora GC, Arrantia-Perez R (2012) Synthesis of CdTe QDs/single-walled aluminosilicate nanotubes hybrid compound and their antimicrobial activity on bacteria. J Nanopart Res 14(1286):1–9

    Google Scholar 

  37. Neelgund GM, Oki A, Luo Z (2012) Antimicrobial activity of CdS and Ag2S quantum dots immobilized on poly(amidoamine) grafted carbon nanotubes. Colloids Surf B 100:215–221

    Article  Google Scholar 

  38. Huang L, Terakawa M, Zhiyentayev T, Huang YY, Sawayama Y, Jahnke A, Tegos GP, Wharton T, Hamblin MR (2010) Innovative cationic fullerenes as broad-spectrum light activated antimicrobials. Nanomedicine 6:442–452

    Article  Google Scholar 

  39. Kumar A, Menon SK (2009) Fullerene derivatized s-triazine analogues as antimicrobial agents. Eur J Med Chem 44:2178–2183

    Article  Google Scholar 

  40. Lu Z, Dai T, Huang L, Kurup DB, Tegos GP, Jahnke A, Wharton T, Hamblin MR (2010) Photodynamic therapy with a cationic functionalized fullerene rescues mice from fatal wound infections. Nanomedicine 5:1525–1533

    Article  Google Scholar 

  41. Marchesan S, Da Ros T, Spalluto G, Balzarini J, Prato M (2005) Anti-HIV properties of actionic fullerene derivatives. Bioorg Med Chem Lett 15:3615–3618

    Article  Google Scholar 

  42. Kornev AB, Peregudov AS, Martynenko VM, Balzarini J, Hoorelbeke B, Troshin PA (2011) Synthesis and antiviral activity of highly water-soluble polycarboxylic derivatives of [70]fullerene. Chem Commun 47:8298–8300

    Article  Google Scholar 

  43. Chae SR, Therezien M, Budarz JF, Wessel L, Lin S, Xiao Y, Wiesner MR (2011) Comparison of the photosensitivity and bacterial toxicity of spherical and tubular fullerenes of variable aggregate size. J Nanopart Res 13:5121–5127

    Article  Google Scholar 

  44. Lyon DY, Alvarez PJJ (2008) Fullerene water suspension (nC60) exerts antibacterial effects via ROS-independent protein oxidation. Environ Sci Technol 42:8127–8132

    Article  Google Scholar 

  45. Vecitis CD, Zodrow KR, Kang S, Elimelech M (2012) Electronic-structure-dependent bacterial cytotoxicity of single-walled carbon nanotubes. ACS Nano 4:5471–5479

    Article  Google Scholar 

  46. Zardini HZ, Amiri A, Shanbedi M, Maghrebi MM, Banaidam M (2012) Enhanced antibacterial activity of amino acids-functionalized multi walled carbon nanotubes by a simple method. Colloids Surf B 92:196–202

    Article  Google Scholar 

  47. Aslan S, Deneufchatel M, Hashimi S, Li N, Pfefferle LD, Elimelech M, Pauthe E, Van Tassel PR (2012) Carbon nanotube-based antimicrobial biomaterials formed via layer-by-layer assembly with polypeptides. J Colloid Interface Sci 388:268–273

    Article  Google Scholar 

  48. Murugan E, Vimala G (2011) Effective functionalization of multiwalled carbon nanotube with amphiphilic poly(propyleneimine) dendrimer carrying silver nanoparticles for better dispersability and antimicrobial activity. J Colloid Interface Sci 357:354–365

    Article  Google Scholar 

  49. Qi X, Gunawan P, Xu R, Chang MW (2012) Cefalexin-immobilized multi-walled carbon nanotubes show strong antimicrobial and anti-adhesion properties. Chem Eng Sci 84:552–556

    Article  Google Scholar 

  50. Wu W, Wieckowski S, Pastorin G, Benincasa M, Klumpp C, Briand JP, Gennaro R, Prato M, Bianco A (2005) Targeted delivery of amphotericin B to cells by using functionalized carbon nanotubes. Angew Chem Int Ed 44:6358–6362

    Article  Google Scholar 

  51. Pantarotto D, Partidos CD, Hoebeke Brown JF, Kramer E, Briand JP, Muller S, Prato M, Bianco A (2003) Immunization with peptide-functionalized carbon nanotubes enhances virus-specific neutralizing antibody responses. Chem Biol 10:961–966

    Article  Google Scholar 

  52. Benincasa M, Pacor S, Wu W, Prato M, Bianco A, Gennaro R (2011) Antifungal activity of amphotericin B conjugated to carbon nanotubes. ACS Nano 5:199–208

    Article  Google Scholar 

  53. Liu S, Zeng YH, Hofmann M, Burcombe E, Wei J, Jiang R, Kong J, Chen Y (2011) Antibacterial activity of graphite, graphite oxide, grapheme oide, and reduced graphene oxide: membrane and oxidative stress. ACS Nano 5:6971–6980

    Article  Google Scholar 

  54. Liu S, Hu M, Zeng TH, Wu R, Jiang R, Wei J, Wang L, Kong J, Chen Y (2012) Lateral dimension-dependent antibacterial activity of grapheme oxide sheets. Langmuir 28:12364–12372

    Article  Google Scholar 

  55. Sawangphruk SMP, Chiochan P, Sangsri T, Siwayaprahm P (2012) Synthesis and antifungfal activity of reduced graphene oxide nanosheets. Carbon 50:5156–5161

    Article  Google Scholar 

  56. Santos CM, Mangadlao J, Ahmed F, Leon A, Advincula RC, Rodrigues DF (2012) Graphene nanocomposite for biomedical applications: fabrication, antimicrobial, and cytotoxic investigations. Nanotechnology 23:395101, 1–10

    Article  Google Scholar 

  57. Carpio IEM, Santos CM, Wei X, Rodrigues DF (2012) Toxicity of a polymer-graphene oxide composite against bacterial planktonic cells, biofilms, and mammalian cells. Nanoscale 4:4746–4756

    Article  Google Scholar 

  58. Nguyen VH, Kim BK, Jo YL, Shim JJ (2012) Preparation and antibacterial activity of silver nanoparticles-decorated grapheme composites. J Supercrit Fluids 72:28–35

    Article  Google Scholar 

  59. Das MR, Sharma RK, Saikia R, Kale VS, Shelke MV, Sengupta P (2011) Synthesis of silver nanoparticles in an aqueous suspension of graphene oxide sheets and its antimicrobial activity. Colloids Surf B 83:16–22

    Article  Google Scholar 

  60. Botequim D, Maia J, Lino MMF, Lopes LMF, Simones PN, Ilharco LM, Ferreira L (2012) Nanoparticles and surfaces presenting antifungal, antibacterial, and antiviral properties. Langmuir 28:7646–7656

    Article  Google Scholar 

  61. Wu C, Zhou Y, Xu M, Han P, Chen L, Chang J, Xiao Y (2013) Copper-containing mesoporous bioactive glass scaffolds with multifunctional properties of angiogenesis capacity, osteostimulation, and antibacterial activity. Biomaterials 34:422–433

    Article  Google Scholar 

  62. Molina-Manso D, Manzano M, Doadrio JC, Del Prado G, Ortiz-Perez A, Vallet-Regi M, Gomez-Barrena E, Esteban J (2012) Usefulness of SBA-15 mesoporous ceramics as a delivery system for vancomycin, rifampicin and linezolid: a preliminary report. Int J Antimicrob Agents 40:252–256

    Article  Google Scholar 

  63. Park SY, Barton M, Pendleton P (2011) Mesoporous silica as a natural antimicrobial carrier. Colloids Surf A 385:256–261

    Article  Google Scholar 

  64. Izquierdo-Barba I, Vallet-Regi M, Kupferschmidt N, Terasaki O, Schmidtchen A, Malmsten M (2009) Incorporation of antimicrobial compounds in mesoporous silica film monolith. Biomaterials 30:5729–5736

    Article  Google Scholar 

  65. Paulo CSO, Vidal M, Ferreira LS (2010) Antifungal nanoparticles and surfaces. Biomacromolecules 11:2810–2817

    Article  Google Scholar 

  66. Carmona D, Lalueza P, Balas F, Arruebo M, Santamaria J (2012) Mesoporous silica loaded with peracetic acid and silver nanoparticles as a dual-effect, highly efficient bactericidal agent. Micropor Mesopor Mater 161:84–90

    Article  Google Scholar 

  67. Yang H, Liu Y, Shen Q, Chen L, You W, Wang X, Sheng J (2012) Mesoporous silica microcapsule-supported Ag nanoparticles fabricated via nano-assembly and its antibacterial properties. J Mater Chem 22:24132–24138

    Article  Google Scholar 

  68. Wang MC, Lin JJ, Tseng HJ, Hsu SH (2012) Characterization, antimicrobial activities, and biocompatibility of organically modified clays and their nanocomposites with polyurethane. ACS Appl Mater Interfaces 4:338–350

    Article  Google Scholar 

  69. Wu T, Xie AG, Tan SZ, Cai X (2011) Antimicrobial effects of quarternary phosphonium salt intercalated clay minerals on Escherichia coli and Staphylococci aureus. Colloids Surf B 86:232–236

    Article  Google Scholar 

  70. Eversdijk J, Erich SLF, Hermanns SPM, Adan OCG, De Bolle M, de Meyer K, Bylemans D, Bekker M, ten Cate AT (2012) Development and evaluation of a biocide release system for prolonged antifungal activity and finishing materials. Progr Org Coat 74:640–644

    Article  Google Scholar 

  71. Chakraborti M, Jackson JK, Plackett D, Gilchrist SE, Burt HM (2012) The application of layered double hydroxide clay (LDH)-poly(lactide-co-glycolic acid) (PLGA) film composites for the controlled release of antibiotics. J Mater Sci Mater Med 23:1705–1713

    Article  Google Scholar 

  72. Hesse D, Badar M, Bleich A, Smoczek A, Glage S, Kieke M, Behrens P, Müller PP, Esser KH, Stieve M, Prenzler NK (2013) Layered double hydroxides as efficient drug delivery systems of ciprofloxacin in the middle ear: an animal study in rabbits. J Mater Sci Mater Med 24:129–136

    Article  Google Scholar 

  73. Chen C, Gunawan P, Lou XW, Xu R (2012) Silver nanoparticles deposited layered double hydroxide nanoporous coatings with excellent antimicrobial activities. Adv Funct Mater 22:780–787

    Article  Google Scholar 

  74. Su HL, Lin SH, Wei JC, Pao IC, Chiao SH, Huang CC, Lin SZ, Lin JJ (2011) Novel nanohybrids of silver particles on clay platelets for inhibiting silver-resistant bacteria. PLoS One 6(e21125):1–10

    Google Scholar 

  75. Lin JJ, Lin WC, Li SD, Lin CY, Hsu SH (2013) Evaluation of the antibacterial activity and biocompatibility for silver nanoparticles immobilized on nano silica platelets. ACS Appl Mater Interfaces 5:433–443

    Article  Google Scholar 

  76. Zhang L, Luo Q, Zhang F, Zhang DM, Wang YS, Sun YL, Dong WF, Liu JQ, Huo QS, Sun HB (2012) High performance magnetic antimicrobial Janus nanorods decorated with Ag nanoparticles. J Mater Chem 22:23741–23744

    Article  Google Scholar 

  77. Malmsten M, Bysell H, Hansson P (2010) Biomacromolecules in microgels – opportunities and challenges for drug delivery. Curr Opin Colloid Interface Sci 15:435–444

    Article  Google Scholar 

  78. Ekici S, Ilgin P, Yilmaz S, Aktas N, Sahiner N (2011) Temperature and magnetic field responsive hyaluronic acid particles with tunable physical and chemical properties. Appl Surf Sci 257:2669–2676

    Article  Google Scholar 

  79. Luo Y, Hossain M, Wang C, Qiao Y, An J, Ma L, Su M (2013) Targeted nanoparticles for enhanced X-ray radiation killing of multidrug-resistant bacteria. Nanoscale 5:687–694

    Article  Google Scholar 

  80. Wang W, Shang Q, Zheng W, Yu H, Feng X, Wang Z, Zhang Y, Li G (2010) A novel near-infrared antibacterial material depending on the upconverting property of Er3+-Yb3+-Fe3+ tridoped TiO2 nanopowder. J Phys Chem C 114:13663–13669

    Article  Google Scholar 

  81. Lim ME, Lee YL, Zhang Y, Chu JJH (2012) Photodyamic inactivation of viruses using upconversion nanoparticles. Biomaterials 33:1912–1920

    Article  Google Scholar 

Download references

Acknowledgment

This work was financed by the Swedish Research Council. Expert assistance with illustrations by Ms. Maud Norberg is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Malmsten .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Malmsten, M. (2014). Nanomaterials as Antimicrobial Agents. In: Bhushan, B., Luo, D., Schricker, S., Sigmund, W., Zauscher, S. (eds) Handbook of Nanomaterials Properties. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31107-9_25

Download citation

Publish with us

Policies and ethics