Skip to main content

Properties of Carbon Nanotubes

  • Chapter
  • First Online:
Handbook of Nanomaterials Properties

Abstract

After a brief reminder of the basics of carbon nanotubes regarding their morphology, structure, texture, and nanotexture, this chapter attempts to summarize the knowledge gathered on every aspect of their properties as the result of the extensive investigation carried out in this field since the 1990s. The properties covered include electrical, thermal, optical, electronic, and adsorptive (chemical reactivity) completed by a summary of the behavior of carbon nanotubes in biological environment, both from the point of view of eco- and cytotoxicity and that of positive (e.g., therapeutic) interactions. An abundant literature is cited for enabling the reader to deepen any selected topic among those addressed here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 629.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 799.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Marx W, Barth A (2010) Carbon nanotubes – a scientometric study. In: Marulanda JM (ed) Carbon nanotubes. InTech, Rijeka, pp 1–17

    Google Scholar 

  2. Lv PH, Wang GF, Wan Y et al (2011) Bibliometric trend analysis on global graphene research. Scientometrics 88:399–419

    Google Scholar 

  3. Sadoc JF, Mosseri R (1982) Order and disorder in amorphous, tetrahedrally coordinated semiconductors: a curved-space description. Phil Mag 45:467–483

    Google Scholar 

  4. Kroto HW, Heath JR, O’Brien SC et al (1985) C60 Buckminsterfullerene. Nature 318:162–163

    Google Scholar 

  5. Franklin RE (1951) The structure of graphitic carbons. Acta Cryst 4:253–261

    Google Scholar 

  6. Oberlin A, Boulmier JL, Villey M (1973) Electron microscopic study of kerogen microtexture. Selected criteria for determining the evolution path and evolution stage of kerogen. In: Durand B (ed) Kerogen. Technip, Paris, pp 191–241

    Google Scholar 

  7. Hamada N, Sawada SI, Oshiyama A (1992) New one-dimensional conductors, graphite microtubules. Phys Rev Lett 68:1579–1781

    Google Scholar 

  8. Dresselhaus MS, Dresselhaus G, Eklund PC (1996) Science of fullerenes and carbon nanotubes. Academic Press, San Diego

    Google Scholar 

  9. Noguez C (2006) Optical properties of nanostructures. http://www.fisica.unam.mx/cecilia/. Accessed 18 July 2011

  10. Monthioux M (2012) Introduction to carbon nanotubes. In: Monthioux M (ed) Meta-nanotubes: synthesis, properties, and applications. Wiley-Blackwell, Chichester, pp 7–39

    Google Scholar 

  11. Iijima S (1991) Helical microtubules of graphite carbon. Nature 354:56–58

    Google Scholar 

  12. Oku T, Koi N, Suganuma K et al (2007) Formation and atomic structure of boron nitride nanotubes with a cup-stacked structure. Sol State Comm 143:331–336

    Google Scholar 

  13. Xu FF, Bando Y, Golberg D (2003) The tubular conical helix of graphitic boron nitride. New J Phys 5:118.1–118.16

    Google Scholar 

  14. Saito Y (1995) Nanoparticles and filled nanocapsules. Carbon 33:979–988

    Google Scholar 

  15. Oberlin A, Bonnamy S, Bourrat X et al (1986) Electron microscopic observations on carbonization and graphitization. In: Bacha JD, Newman JW, White JL (eds) Petroleum derived carbons, ACS symposium series. American Chemical Society, Washington, DC, pp 85–98

    Google Scholar 

  16. Banhart F (1999) Irradiation effects in carbon nanostructures. Rep Prog Phys 62:1181–1221

    Google Scholar 

  17. Cojean D, Monthioux M (1992) Unexpected behaviour of interfacial carbon in SiC/SiC composites during oxidation. Br Ceram Trans J 91:188–195

    Google Scholar 

  18. Rosca ID, Watari F, Uo M et al (2005) Oxidation of multiwalled carbon nanotubes by nitric acid. Carbon 43:3124–3131

    Google Scholar 

  19. Thess A, Lee R, Nikolaev P et al (1996) Crystalline ropes of metallic carbon nanotubes. Science 273:483–487

    Google Scholar 

  20. Monthioux M, Serp P, Flahaut E et al (2010) Introduction to carbon nanotubes. In: Bhushan B (ed) Nanotechnology handbook, 3rd edn (revised). Springer, Heidelberg, pp 47–118

    Google Scholar 

  21. Hou P-X, Liu C, Cheng H-M (2008) Purification of carbon nanotubes – a review. Carbon 46:2003–2025

    Google Scholar 

  22. Warner JH, Young NP, Kirkland AI et al (2011) Resolving strain in carbon nanotubes at the atomic level. Nature Mater 10:958–962

    Google Scholar 

  23. Charlier J-C, Blase X, Roche S (2007) Electronic and transport properties of nanotubes. Rev Mod Phys 79:677–732

    Google Scholar 

  24. Jorio A, Dresselhaus G, Dresselhaus MS (2007) Carbon nanotubes. Springer, Berlin

    Google Scholar 

  25. Loiseau A, Launois P, Petit P et al (2006) Understanding carbon nanotubes: from basics to applications. In: Lecturer notes physics, vol 677. Springer, Heidelberg

    Google Scholar 

  26. Ando T (2005) Theory of electronic states and transport in carbon nanotubes. J Phys Soc Jpn 74:777–817

    Google Scholar 

  27. Wilder JWG, Venema LC, Rinzler AG et al (1998) Electronic structure of atomically resolved carbon nanotubes. Nature 391:59–62

    Google Scholar 

  28. Odom TW, Huang J-L, Kim P et al (1998) Atomic structure and electronic properties of single-walled carbon nanotubes. Nature 391:62–64

    Google Scholar 

  29. Tans SJ, Verschueren ARM, Dekker C (1998) Room-temperature transistor based on a single carbon nanotube. Nature 393:49–52

    Google Scholar 

  30. Appenzeller J, Knoch J, Radosavljevic M et al (2004) Multimode transport in schottky-barrier carbon-nanotube field-effect transistors. Phys Rev Lett 92:226802

    Google Scholar 

  31. Chen Z, Appenzeller J, Knoch J et al (2005) The role of metal-nanotube contact in the performance of carbon nanotube field-effect transistors. NanoLett 5:1497–1502

    Google Scholar 

  32. Kim W, Javey A, Tu R et al (2005) Electrical contacts to carbon nanotubes down to 1 nm in diameter. Appl Phys Lett 87:173101

    Google Scholar 

  33. Triozon F, Roche S, Rubio A et al (2004) Electrical transport in carbon nanotubes: role of disorder and helical symmetries. Phys Rev B 69:121410

    Google Scholar 

  34. Latil S, Roche S, Mayou D et al (2004) Mesoscopic transport in chemically doped carbon nanotubes. Phys Rev Lett 92:256805

    Google Scholar 

  35. Woodside MT, McEuen PL (2002) Scanned probe imaging of single-electron charge states in nanotube quantum dots. Science 296:1098–1101

    Google Scholar 

  36. Ando T, Nakanishi T (1998) Impurity scattering in carbon nanotubes – absence of back scattering. J Phys Soc Jpn 67:1704–1713

    Google Scholar 

  37. McEuen PL, Bockrath M, Cobden DH et al (1999) Disorder, pseudospins, and backscattering in carbon nanotubes. Phys Rev Lett 83:5098–5101

    Google Scholar 

  38. Javey A, Guo J, Wang Q et al (2003) Ballistic carbon nanotube field-effect transistors. Nature 424:654–657

    Google Scholar 

  39. Buitelaar MR, Bachtold A, Nussbaumer T et al (2002) Multiwall carbon nanotubes as quantum dots. Phys Rev Lett 88:156801

    Google Scholar 

  40. Bezryadin A, Verschueren ARM, Tans SJ et al (1998) Multiprobe transport experiments on individual single-wall carbon nanotubes. Phys Rev Lett 80:4036–4039

    Google Scholar 

  41. Liang W, Bockrath M, Bozovic D et al (2001) Fabry-Perot interference in a nanotube electron waveguide. Nature 411:665–669

    Google Scholar 

  42. Hansson A, Stafström S (2003) Intershell conductance in multiwall carbon nanotubes. Phys Rev B 67:075406

    Google Scholar 

  43. Bourlon B, Miko C, Forró L et al (2004) Determination of the intershell conductance in multiwalled carbon nanotubes. Phys Rev Lett 93:176806

    Google Scholar 

  44. Roche S, Saito R (2001) Magnetoresistance of carbon nanotubes: from molecular to mesoscopic fingerprints. Phys Rev Lett 87:246803

    Google Scholar 

  45. Nanot S, Escoffier W, Lassagne B et al (2009) Exploring the electronic band structure of individual carbon nanotubes under 60 T. C R Phys 10:268–282

    Google Scholar 

  46. Aronov AG, Sharvin YV (1987) Magnetic flux effects in disordered conductors. Rev Mod Phys 59:755–779

    Google Scholar 

  47. Bachtold A, Strunk C, Salvetat J-P et al (1999) Aharonov-Bohm oscillations in carbon nanotubes. Nature 397:673–675

    Google Scholar 

  48. Coskun UC, Wei T-C, Vishveshwara S et al (2004) h/e magnetic flux modulation of the energy gap in nanotube quantum dots. Science 304:1132–1134

    Google Scholar 

  49. Nemec N, Cuniberti G (2006) Hofstadter butterflies of carbon nanotubes: pseudofractality of the magnetoelectronic spectrum. Phys Rev B 74:165411

    Google Scholar 

  50. Nanot S, Avriller R, Escoffier W et al (2009) Propagative landau states and Fermi level pinning in carbon nanotubes. Phys Rev Lett 103:256801

    Google Scholar 

  51. Wang Y, Kempa K, Kimball B et al (2004) Receiving and transmitting light-like radio waves: antenna effect in arrays of aligned carbon nanotubes. Appl Phys Lett 85:2607–2609

    Google Scholar 

  52. Ausserré D, Valignat M-P (2006) Wide-field optical imaging of surface nanostructures. NanoLett 6:1384–1388

    Google Scholar 

  53. Bacsa WS, Lannin JS (1992) Bilayer interference enhanced Raman scattering. Appl Phys Lett 61:19–21

    Google Scholar 

  54. Lambacher A, Fromherz P (2002) Luminescence of dye molecules on oxidized silicon and fluorescence interference contrast microscopy of biomembranes. J Opt Soc Am B 19:1435–1453

    Google Scholar 

  55. Reich S, Thomsen C, Maultzsch J (2004) Carbon nanotubes: basic concepts and physical properties. Wiley-VCH, Weinheim

    Google Scholar 

  56. Arbouet A, Christofilos D, Del Fatti N et al (2004) Direct measurement of the single-metal-cluster optical absorption. Phys Rev Lett 93:127401

    Google Scholar 

  57. Hartschuh A, Sánchez EJ, Xie XS et al (2003) High-resolution near-field Raman microscopy of single-walled carbon nanotubes. Phys Rev Lett 90:095503

    Google Scholar 

  58. Spataru CD, Ismail-Beigi S, Benedict LX et al (2004) Excitonic effects and optical spectra of single-walled carbon nanotubes. Phys Rev Lett 92:077402

    Google Scholar 

  59. Bachilo SM, Strano MS, Kittrell C et al (2002) Structure-assigned optical spectra of single-walled carbon nanotubes. Science 298:2361–2366

    Google Scholar 

  60. O'Connell MJ, Bachilo SM, Huffman CB et al (2002) Band gap fluorescence from individual single-walled carbon nanotubes. Science 297:593–596

    Google Scholar 

  61. Fantini C, Jorio A, Souza M et al (2004) Optical transition energies for carbon nanotubes from resonant Raman spectroscopy: environment and temperature effects. Phys Rev Lett 93:147406

    Google Scholar 

  62. Telg H, Maultzsch J, Reich S et al (2004) Chirality distribution and transition energies of carbon nanotubes. Phys Rev Lett 93:177401

    Google Scholar 

  63. Araujo PT, Doorn SK, Kilina S et al (2007) Third and fourth optical transitions in semiconducting carbon nanotubes. Phys Rev Lett 98:067401

    Google Scholar 

  64. Sfeir MY, Beetz T, Wang F et al (2006) Optical spectroscopy of individual single-walled carbon nanotubes of defined chiral structure. Science 312:554–556

    Google Scholar 

  65. Kataura H, Kumazawa Y, Maniwa Y et al (1999) Optical properties of single-wall carbon nanotubes. Synth Met 103:2555–2558

    Google Scholar 

  66. Tsyboulski DA, Rocha J-DR, Bachilo SM et al (2007) Structure-dependent fluorescence efficiencies of individual single-walled carbon nanotubes. NanoLett 7:3080–3085

    Google Scholar 

  67. Gambetta A, Manzoni C, Menna E et al (2006) Real-time observation of nonlinear coherent phonon dynamics in single-walled carbon nanotubes. Nat Phys 2:515–520

    Google Scholar 

  68. Ju SY, Kopcha WP, Papadimitrakopoulos F (2009) Brightly fluorescent single-walled carbon nanotubes via an oxygen-excluding surfactant organization. Science 323:1319–1323

    Google Scholar 

  69. Chen J, Perebeinos V, Freitag M et al (2005) Bright infrared emission from electrically induced excitons in carbon nanotubes. Science 310:1171–1174

    Google Scholar 

  70. Jorio A, Saito R, Hafner JH et al (2001) Structural (n, m) determination of isolated single wall carbon nanotubes by resonant Raman scattering. Phys Rev Lett 86:1118–1121

    Google Scholar 

  71. Meyer JC, Paillet M, Michel T et al (2005) Raman modes of index-identified freestanding single-walled carbon nanotubes. Phys Rev Lett 95:217401

    Google Scholar 

  72. Gerber IC, Puech P, Gannouni A et al (2009) Influence of nitrogen doping on the radial breathing mode in carbon nanotubes. Phys Rev B 79:075423

    Google Scholar 

  73. Jorio A, Souza Filho AG, Dresselhaus G et al (2002) G-band resonant Raman study of 62 isolated single-wall carbon nanotubes. Phys Rev B 65:155412

    Google Scholar 

  74. Thomsen C, Reich S (2000) Double resonant Raman scattering in graphite. Phys Rev Lett 85:5214–5217

    Google Scholar 

  75. Cançado LG, Jorio A, Martins Ferreira EH et al (2011) Quantifying defects in graphene via Raman spectroscopy at different excitation energies. NanoLett 11:3190–3196

    Google Scholar 

  76. Knight DS, White WB (1989) Characterization of diamond films by Raman spectroscopy. J Mater Res 4:385–393

    Google Scholar 

  77. Georgi C, Hartschuh A (2010) Tip-enhanced Raman spectroscopic imaging of localized defects in carbon nanotubes. Appl Phys Lett 97:143117

    Google Scholar 

  78. Cançado LG, Takai K, Enoki T et al (2006) General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy. Appl Phys Lett 88:163106

    Google Scholar 

  79. Puech P, Hubel H, Dunstan DJ et al (2004) Discontinuous tangential stress in double wall carbon nanotubes. Phys Rev Lett 93:95506

    Google Scholar 

  80. Chen G, Bandow S, Margine ER et al (2003) Chemically doped double-walled carbon nanotubes: cylindrical molecular capacitors. Phys Rev Lett 90:257403

    Google Scholar 

  81. Bacsa RR, Flahaut E, Laurent C et al (2003) Narrow diameter double wall carbon nanotubes: synthesis and inelastic light scattering. New J Phys 5:131

    Google Scholar 

  82. Bacsa WS, Ugarte D, Châtelain A et al (1994) High-resolution electron microscopy and inelastic light scattering of purified multishelled carbon nanotubes. Phys Rev B 50:15473–15476

    Google Scholar 

  83. Tishkova V, Raynal P-I, Puech P et al (2011) Electrical conductivity and Raman imaging of double wall carbon nanotubes in a polymer matrix. Comp Sci Technol 71:1326–1330

    Google Scholar 

  84. Ruoff RS, Lorents DC (1995) Mechanical and thermal properties of carbon nanotubes. Carbon 33:925–930

    Google Scholar 

  85. Osman MA, Cummings AW, Srivastava D (2007) Thermal properties of carbon nanotubes. Topics Appl Phys 109:154–187

    Google Scholar 

  86. Maultzsch J, Reich S, Thomsen C et al (2002) Phonon dispersion of carbon nanotubes. Solid State Commun 121:471–474

    Google Scholar 

  87. Ishii H, Kobayashi N, Hirose K (2007) Electron-phonon coupling effect on quantum transport in carbon nanotubes using time-dependent wave-packet approach. Physica E 40:249–252

    Google Scholar 

  88. Hone J, Whitney M, Piskoti C et al (1999) Thermal conductivity of single-walled carbon nanotubes. Phys Rev B 59:R2514–R2516

    Google Scholar 

  89. Hone J, Batlogg B, Benes Z et al (2000) Quantized phonon spectrum of single-wall carbon nanotubes. Science 289:1730–1733

    Google Scholar 

  90. Yamamoto T, Watanabe S, Watanabe D (2004) Universal features of quantized thermal conductance of carbon nanotubes. Phys Rev Lett 92:075502/1–075502/4

    Google Scholar 

  91. Berber S, Kwon Y, Tomanek D (2000) Unusually high thermal conductivity of carbon nanotubes. Phys Rev Lett 84:4613–4616

    Google Scholar 

  92. Lindsay L, Broido DA, Mingo N (2009) Lattice thermal conductivity of single-walled carbon nanotubes: beyond the relaxation time approximation and phonon-phonon scattering selection rules. Phys Rev B 80:125407/1–125407/7

    Google Scholar 

  93. Osman MA, Srivastava D (2001) Temperature dependence of the thermal conductivity of single-wall carbon nanotubes. Nanotechnology 12:21–24

    Google Scholar 

  94. Gu Y, Chen Y (2007) Thermal conductivities of single-walled carbon nanotubes calculated from the complete phonon dispersion relations. Phys Rev B 76:134110/1–134110/9

    Google Scholar 

  95. Grujicic M, Cao G, Gersten B (2004) Atomic-scale computations of the lattice contribution to thermal conductivity of single-walled carbon nanotubes. Mater Sci Eng B 107:204–216

    Google Scholar 

  96. Ando T (2004) Carbon nanotubes and exotic transport properties. Physica E 22:656–661

    Google Scholar 

  97. Zhang W, Zhu Z, Wang F et al (2004) Chirality dependence of the thermal conductivity of carbon nanotubes. Nanotechnology 15:936–939

    Google Scholar 

  98. Cao JX, Yan XH, Xiao Y et al (2004) Thermal conductivity of zigzag single-walled carbon nanotubes: role of the Umklapp process. Phys Rev B 69:073407/1–073407/4

    Google Scholar 

  99. Maruyama SA (2002) Molecular dynamics simulation of heat conduction in finite length SWNTs. Physica B 323:193–195

    Google Scholar 

  100. Alaghemandi M, Algaer R, Böhm MC et al (2009) The thermal conductivity and thermal rectification of carbon nanotubes studied using reverse non-equilibrium molecular dynamics simulations. Nanotechnology 20:115704/1–115704/8

    Google Scholar 

  101. Chiu HY, Deshpande VV, Postma HWC et al (2005) Ballistic phonon thermal transport in multiwalled carbon nanotubes. Phys Rev Lett 95:226101/1–226101/4

    Google Scholar 

  102. Yu C, Shi L, Yao Z et al (2005) Thermal conductance and thermo-power of an individual single-wall carbon nanotube. Nano Lett 5:1842–1846

    Google Scholar 

  103. Prasher R (2008) Thermal boundary resistance and thermal conductivity of multi-walled carbon nanotubes. Phys Rev B 77:075424/1–075424/11

    Google Scholar 

  104. Chang CW, Okawa D, Garcia H et al (2008) Breakdown of Fourier’s law in nanotube thermal conductors. Phys Rev Lett 101:075903/1–075903/4

    Google Scholar 

  105. Donadio D, Galli G (2007) Thermal conductivity of isolated and interacting carbon nanotubes: comparing results from molecular dynamics and the Boltzmann transport equation. Phys Rev Lett 99:255502/1–255502/4

    Google Scholar 

  106. Yamamoto T, Watanabe K (2006) Nonequilibrium Green’s function approach to phonon transport in defective carbon nanotubes. Phys Rev Lett 96:255503/1–255503/4

    Google Scholar 

  107. Che J, Cagin T, Goddard WA (2000) Thermal conductivity of carbon nanotubes. Nanotechnology 11:65–69

    Google Scholar 

  108. Kim P, Shi L, Majumdar A et al (2001) Thermal transport measurements of individual multi-walled nanotubes. Phys Rev Lett 87:215502/1–215502/4

    Google Scholar 

  109. Small JP, Shi L, Kim P (2003) Mesoscopic thermal and thermoelectric measurements of individual carbon nanotubes. Solid State Commun 127:181–186

    Google Scholar 

  110. Yang DJ, Wang SG, Zhang Q et al (2004) Thermal and electrical transport in multi-walled carbon nanotubes. Phys Lett A 329:207–213

    Google Scholar 

  111. Fujii M, Zhang X, Xie H et al (2005) Measuring the thermal conductivity of a single carbon nanotube. Phys Rev Lett 95:065502/1–065502/4

    Google Scholar 

  112. Choi TY, Poulikakos D, Tharian J et al (2006) Measurement of the thermal conductivity of individual carbon nanotubes by the four-point three-ω method. Nano Lett 6:1589–1593

    Google Scholar 

  113. Li Q, Liu C, Wang X et al (2009) Measuring the thermal conductivity of individual carbon nanotubes by the Raman shift method. Nanotechnology 20:145702/1–145702/5

    Google Scholar 

  114. Pop E, Mann D, Wang Q et al (2006) Thermal conductance of an individual single-wall carbon nanotube above room temperature. Nano Lett 6:96–100

    Google Scholar 

  115. Pettes MT, Shi L (2009) Thermal and structural characterizations of individual single-, double-, and multi-walled carbon nanotubes. Adv Funct Mater 19:3918–3925

    Google Scholar 

  116. Mizel A, Benedict LX, Cohen ML et al (1999) Analysis of the low-temperature specific heat of multiwalled carbon nanotubes and carbon nanotube ropes. Phys Rev B 60:3264–3270

    Google Scholar 

  117. Yi W, Lu L, Zhang DL et al (1999) Linear specific heat of carbon nanotubes. Phys Rev B 59:R9015–R9018

    Google Scholar 

  118. Yang DJ, Zhang Q, Chen G et al (2002) Thermal conductivity of multi-walled carbon nanotubes. Phys Rev B 66:165440/1–165440/6

    Google Scholar 

  119. Aliev AE, Guthy C, Zhang M et al (2007) Thermal transport in MWCNT sheets and yarns. Carbon 45:2880–2888

    Google Scholar 

  120. Jakubinek MB, Johnson MB, White MA et al (2012) Thermal and electrical conductivity of array-spun multi-walled carbon nanotube yarns. Carbon 50:244–248

    Google Scholar 

  121. Behabtu N, Young CC, Tsentalovich DE et al (2013) Strong, light, multifunctional fibers of carbon nanotubes with ultrahigh conductivity. Science 339:182–186

    Google Scholar 

  122. Han Z, Fina A (2011) Thermal conductivity of carbon nanotubes and their polymer nanocomposites: a review. Prog Polymer Sci 36:914–944

    Google Scholar 

  123. Shenogin S, Bodapati A, Xue L et al (2004) Effect of chemical functionalization on thermal transport of carbon nanotube composites. Appl Phys Lett 85:2229–2231

    Google Scholar 

  124. Liu CH, Fan SS (2005) Effects of chemical modifications on the thermal conductivity of carbon nanotube composites. Appl Phys Lett 86:123106/1–123106/3

    Google Scholar 

  125. Mamunya Y, Boudenne A, Lebovka N et al (2008) Electrical and thermophysical behaviour of PVC-MWCNT nanocomposites. Compos Sci Technol 68:1981–1988

    Google Scholar 

  126. Bandow S (1997) Radial thermal expansion of purified multiwall carbon nanotubes measured by X-ray diffraction. Jpn J Appl Phys Part 2(36):1403–1405

    Google Scholar 

  127. Yosida Y (2000) High-temperature shrinkage of single-walled carbon nanotube bundles up to 1600 K. J Appl Phys 87:3338–3341

    Google Scholar 

  128. Maniwa Y, Fujiwara R, Kira H et al (2001) Thermal expansion of single-walled carbon nanotube (SWNT) bundles: x-ray diffraction studies. Phys Rev B 64:241402/1–241402/3

    Google Scholar 

  129. Jiang H, Liu B, Huang Y et al (2004) Thermal expansion of single wall carbon nanotubes. J Eng Mater Technol 126:265–270

    Google Scholar 

  130. Jiang JW, Wang JS, Li B (2009) Thermal expansion in single-walled carbon nanotubes and graphene: non-equilibrium Green’s function approach. Phys Rev B 80:205429/1–205429/7

    Google Scholar 

  131. Shokrieh MM, Rafiee R (2010) A review of the mechanical properties of isolated carbon nanotubes and carbon nanotube composites. Mech Comp Mater 46:155–172

    Google Scholar 

  132. Treacy MMJ, Ebbesen TW, Gibson JM (1996) Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 381:678–680

    Google Scholar 

  133. Salvetat J-P, Briggs GAD, Bonard JM et al (1999) Elastic and shear moduli of single-walled carbon nanotube ropes. Phys Rev Lett 82:944–947

    Google Scholar 

  134. Krishnan A, Dujardin E, Ebbesen TW et al (1998) Young’s modulus of single-walled nanotubes. Phys Rev B 58:14013–14019

    Google Scholar 

  135. Yu MF, Lourie O, Dyer MJ et al (2000) Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287:637–640

    Google Scholar 

  136. Tombler TW, Zhou C, Alexseyev L et al (2000) Reversible electromechanical characteristics of carbon nanotubes under local-probe manipulation. Nature 405:769–772

    Google Scholar 

  137. Lu JP (1997) Elastic properties of carbon nanotubes and nanoropes. Phys Rev Lett 79:1297–12300

    Google Scholar 

  138. Wei X, Chen Q, Peng LM et al (2009) Tensile loading of double-walled and triple-walled carbon nanotubes and their mechanical properties. J Phys Chem C 113:17002–17005

    Google Scholar 

  139. Li F, Cheng HM, Bai S et al (2000) Tensile strength of single-walled carbon nanotubes directly measured from their macroscopic ropes. Appl Phys Lett 77:3161–3163

    Google Scholar 

  140. Li Y, Wang K, Wei J et al (2005) Tensile properties of long aligned double-walled carbon nanotube strands. Carbon 43:31–35

    Google Scholar 

  141. Muster J, Burghard M, Roth S et al (1998) Scanning force microscopy characterization of individual carbon nanotubes on electrode arrays. J Vac Sci Technol 16:2796–2801

    Google Scholar 

  142. Sammalkorpi M, Krasheninnikov A, Kuronen A et al (2004) Mechanical properties of carbon nanotubes with vacancies and related defects. Phys Rev B 70:245416/1–245416/8

    Google Scholar 

  143. Mielke SL, Zhang S, Khare R et al (2007) The effects of extensive pitting on the mechanical properties of carbon nanotubes. Chem Phys Lett 446:128–132

    Google Scholar 

  144. Poncharal P, Wang ZL, Ugarte D et al (1999) Electrostatic deflection and electromechanical resonances of carbon nanotubes. Science 283:1513–1516

    Google Scholar 

  145. Després JF, Daguerre E, Lafdi K (1995) Flexibility of graphene layers in carbon nanotubes. Carbon 33:87–92

    Google Scholar 

  146. Iijima S, Brabec C, Maiti A et al (1996) Structural flexibility of carbon nanotubes. J Phys Chem 104:2089–2092

    Google Scholar 

  147. Demczyk BG, Wang YM, Cummings J et al (2002) Direct mechanical measurement of the tensile strength and elastic modulus of multiwalled carbon nanotubes. Mater Sci Eng, A 334:173–178

    Google Scholar 

  148. Ruoff RS, Tersoff J, Lorents DC et al (1993) Radial deformation of carbon nanotubes by Van der Waals forces. Nature 364:514–516

    Google Scholar 

  149. Chopra NG, Benedict LX, Crespi VH et al (1995) Fully collapsed carbon nanotubes. Nature 377:135–138

    Google Scholar 

  150. Aguiar AL, Capaz RB, Souza Filho AG et al (2012) Structural and phonon properties of bundled single- and double-wall carbon nanotubes under pressure. J Phys Chem C 116:22637–22645

    Google Scholar 

  151. Caillier C, Ayari A, Gouttenoire V et al (2010) An individual carbon nanotube transistor tuned by high pressure. Adv Funct Mater 20:3330–3335

    Google Scholar 

  152. Arvanitidis J, Christofilos D, Papagelis K et al (2005) Pressure screening in the interior of primary shells in double-wall carbon nanotubes. Phys Rev B 71:125404/1–125404/5

    Google Scholar 

  153. Aguiar AL, Barros EB, Capaz RB et al (2011) Pressure-induced collapse in double-walled carbon nanotubes: chemical and mechanical screening effects. J Phys Chem C 115:5378–5384

    Google Scholar 

  154. Buongiorno-Nardelli M, Yakobson BI, Bernholc J (1998) Mechanism of strain release in carbon nanotubes. Phys Rev B 57:R4277–R4280

    Google Scholar 

  155. Zhao QZ, Buongiorno-Nardelli M, Bernholc J (2002) Ultimate strength of carbon nanotubes: a theoretical study. Phys Rev B 65:144105/1–144105/6

    Google Scholar 

  156. Belytschko T, Xiao SP, Schatz GC et al (2002) Atomistic simulations of nanotube fracture. Phys Rev B 65:235430/1–235430/8

    Google Scholar 

  157. Ogata S, Shibutani Y (2003) Ideal tensile strength and band gap of single-walled carbon nanotubes. Phys Rev B 68:165409/1–165409/4

    Google Scholar 

  158. Mielke SL, Troya D, Zhang S et al (2004) The role of vacancy defects and holes in the fracture of carbon nanotubes. Chem Phys Lett 390:413–420

    Google Scholar 

  159. Walters DA, Ericson LM, Casavant MJ et al (1999) Elastic strain of freely suspended single-wall carbon nanotube ropes. Appl Phys Lett 74:3803–3805

    Google Scholar 

  160. Yu MF, Files BS, Arepalli S et al (2000) Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys Rev Lett 84:5552–5555

    Google Scholar 

  161. Huang JY, Chen S, Wang ZQ et al (2006) Superplastic carbon nanotubes. Nature 439:281

    Google Scholar 

  162. Liew KM, He XQ, Wong CH (2004) On the study of elastic and plastic properties of multi-walled carbon nanotubes under axial tension using molecular dynamics simulation. Acta Mater 52:2521–2527

    Google Scholar 

  163. Peng B, Locascio M, Zapol P et al (2008) Measurements of near-ultimate strength for multiwalled carbon nanotubes and irradiation-induced crosslinking improvements. Nat Nanotechnol 3:626–631

    Google Scholar 

  164. Barber AH, Andrews R, Schadler LS et al (2005) On the tensile strength distribution of multiwalled carbon nanotubes. Appl Phys Lett 87:203106/1–203106/3

    Google Scholar 

  165. Yamamoto G, Suk JW, An JH et al (2010) The influence of nanoscale defects on the fracture of multi-walled carbon nanotubes under tensile loading. Diam Relat Mater 19:748–751

    Google Scholar 

  166. Lozovik YE, Popov AM (2007) Properties and nanotechnological applications of nanotubes. Phys Usp 50:749–761

    Google Scholar 

  167. Kis A, Jensen K, Aloni S et al (2006) Interlayer forces and ultralow sliding friction in multiwalled carbon nanotubes. Phys Rev Lett 97:025501/4–025501/4

    Google Scholar 

  168. Bichoutskaia E, Ershova OV, Lozovik YE et al (2009) Ab initio calculations of the walls shear strength of carbon nanotubes. Tech Phys Lett 35:666–669

    Google Scholar 

  169. Vigolo B, Penicaud A, Coulon C et al (2000) Macroscopic fibers and ribbons of oriented carbon nanotubes. Science 290:1331–1334

    Google Scholar 

  170. Dalton AB, Collins S, Muñoz E et al (2003) Super-tough carbon-nanotube fibres. Nature 423:702

    Google Scholar 

  171. Behabtu N, Green MJ, Pasquali M (2008) Carbon nanotube-based neat fibers. Nano Today 3:24–34

    Google Scholar 

  172. Zhu HW, Xu CL, Wu DH et al (2002) Direct synthesis of long single-walled carbon nanotube strands. Science 296:884–886

    Google Scholar 

  173. Pan ZW, Xie SS, Lu L et al (1999) Tensile tests of ropes of very long aligned multiwall carbon nanotubes. Appl Phys Lett 74:3152–3154

    Google Scholar 

  174. Vilatela JJ, Elliott JA, Windle AH (2011) A model for the strength of yarn-like carbon nanotube fibers. ACS Nano 5:1921–1927

    Google Scholar 

  175. Kleiner A, Eggert S (2001) Curvature, hybridization, and STM images of carbon nanotubes. Phys Rev B 64:113402

    Google Scholar 

  176. Yu O, Jing-Cui P, Hui W et al (2008) The rehybridization of electronic orbitals in carbon nanotubes. Chin Phys B 17:3123–3127

    Google Scholar 

  177. Durgun E, Dag S, Ciraci S et al (2004) Energetics and electronic structures of individual atoms adsorbed on carbon nanotubes. J Phys Chem B 108:575–582

    Google Scholar 

  178. Hosoya N, Kusakabe K, Maheswari SU (2011) Theoretical simulation of deformed carbon nanotubes with adsorbed metal atoms: enhanced reactivity by deformation. Jpn J Appl Phys 105101

    Google Scholar 

  179. Menon M, Andriotis AN, Froudakis GE (2000) Curvature dependence of the metal catalyst atom interaction with carbon nanotube walls. Chem Phys Lett 320:425–434

    Google Scholar 

  180. Chen G, Kawazoe Y (2006) Interaction between a single Pt atom and a carbon nanotube studied by density functional theory. Phys Rev B 73:125410

    Google Scholar 

  181. Valencia H, Gil A, Frapper G (2010) Trends in the adsorption of 3d transition metal atoms onto graphene and nanotube surfaces: a DFT study and molecular orbital analysis. J Phys Chem C 114:14141–14153

    Google Scholar 

  182. Gao H, Zhao J (2010) First-principles study of Ru atoms and clusters adsorbed outside and inside carbon nanotubes. J Chem Phys 132:234704

    Google Scholar 

  183. Xu S-F, Yuan G, Li C et al (2011) Modulation of the work function of capped single-walled carbon nanotube by alkali-metal adsorption: a theoretical study. J Phys Chem C 115:8928–8933

    Google Scholar 

  184. Xu S-F, Yuan G, Li C et al (2010) Work functions of capped (5, 5) and (9, 0) single-walled carbon nanotubes adsorbed with alkali-metal atoms. Appl Phys Lett 96:233111

    Google Scholar 

  185. Lee E-C, Kim Y-S, Jin Y-G et al (2002) First-principles study of hydrogen adsorption on carbon nanotube surfaces. Phys Rev B 66:073415

    Google Scholar 

  186. Alonso JA, Arellano JS, Molina LM et al (2004) Interaction of molecular and atomic hydrogen with single-wall carbon nanotubes. IEEE Trans Nanotech 3:304–310

    Google Scholar 

  187. Barone V, Heyd J, Scuseria GE (2004) Interaction of atomic hydrogen with single-walled carbon nanotubes: a density functional theory study. J Chem Phys 120:7169–7174

    Google Scholar 

  188. Senami M, Ikeda Y, Fukushima A et al (2011) Theoretical study of adsorption of lithium atom on carbon nanotube. AIP Adv 1:042106

    Google Scholar 

  189. Udomvech A, Kerdcharoen T, Osotchan T (2005) First principles study of Li and Li+ adsorbed on carbon nanotube: variation of tubule diameter and length. Chem Phys Lett 406:161–166

    Google Scholar 

  190. Firlej L, Kuchta B (2004) Helium adsorption in single wall carbon nanotubes-grand canonical Monte Carlo study. Colloids Surf A 241:149–154

    Google Scholar 

  191. Chen D-L, Al-Saidi W, Johnson K (2011) Noble gas adsorption on carbon nanotubes: insight from a van der Waals density functional study. In: American physical society meeting, March 21–25 Abstract #B31.008

    Google Scholar 

  192. Wang Y, Yeow JTW (2009) A review of carbon nanotubes-based gas sensors. J Sens Article ID:493904

    Google Scholar 

  193. Zollo G, Gala F (2012) Atomistic modeling of gas adsorption in nanocarbons. J Nanomater Article ID:152489

    Google Scholar 

  194. Zhao J, Buldum A, Han J et al (2002) Gas molecule adsorption in carbon nanotubes and nanotube bundles. Nanotechnology 13:195–200

    Google Scholar 

  195. Pan B, Xing B (2008) Adsorption mechanisms of organic chemicals on carbon nanotubes. Env Sci Technol 42:9005–9013

    Google Scholar 

  196. Chen C-W, Lee M-H, Clark SJ (2004) Gas molecule effects on field emission properties of single-walled carbon nanotube. Diamond Relat Mater 13:1306–1313

    Google Scholar 

  197. Suarez-Martinez I, Mittal J, Allouche H et al (2013) Fullerene attachment to sharp-angle nanocones mediated by covalent oxygen bridging. Carbon 54:149–154

    Google Scholar 

  198. Carroll DL, Redlich P, Ajayan PM et al (1997) Electronic structure and localized states at carbon nanotube tips. Phys Rev Lett 78:2811–2814

    Google Scholar 

  199. Charlier J-C (2002) Defects in carbon nanotubes. Acc Chem Res 35:1063–1069

    Google Scholar 

  200. Robinson JA, Snow ES, Badescu SC et al (2006) Role of defects in single-walled carbon nanotube chemical sensors. Nano Lett 6:1747–1751

    Google Scholar 

  201. Hamon MA, Hu H, Bhowmik P et al (2001) End-group and defect analysis of soluble single-walled carbon nanotubes. Chem Phys Lett 347:8–12

    Google Scholar 

  202. Mawhinney DB, Naumenko V, Kuznetsova A et al (2000) Surface defect site density on single walled carbon nanotubes by titration. Chem Phys Lett 324:213–216

    Google Scholar 

  203. Monthioux M, Smith BW, Burteaux B et al (2001) Sensitivity of single-wall carbon nanotubes to chemical processing: an electron microscopy investigation. Carbon 39:1251–1272

    Google Scholar 

  204. Stone AJ, Wales DJ (1986) Theoretical studies of icosahedral C60 and some related species. Chem Phys Lett 128:501–503

    Google Scholar 

  205. Bettinger HF (2005) The reactivity of defects at the sidewalls of single-walled carbon nanotubes: the Stone-Wales defect. J Phys Chem B 109:6922–6924

    Google Scholar 

  206. Picozzi S, Santucci S, Lozzi L et al (2004) Ozone adsorption on carbon nanotubes: the role of Stone-Wales defects. J Chem Phys 120:7147–7152

    Google Scholar 

  207. Yang SH, Shin WH, Kang JK (2006) Ni adsorption on Stone-Wales defect sites in single-wall carbon nanotubes. J Chem Phys 125:084705

    Google Scholar 

  208. Rivera JL, Rico JL, Starr FW (2007) Interaction of water with cap-ended defective and nondefective small carbon nanotubes. J Phys Chem C 111:18899–18905

    Google Scholar 

  209. Shtogun YV, Woods LM (2009) Electronic and magnetic properties of deformed and defective single wall carbon nanotubes. Carbon 47:3252–3262

    Google Scholar 

  210. Rossato J, Baierle RJ, Fazzio A et al (2005) Vacancy formation process in carbon nanotubes: first-principles approach. Nano Lett 5:197–200

    Google Scholar 

  211. Gerber I, Oubenali M, Bacsa R et al (2011) Theoretical and experimental studies on the carbon nanotube surface oxidation by nitric acid: interplay between functionalization and vacancy enlargement. Chem Eur J 17:11467–11477

    Google Scholar 

  212. Berber S, Oshiyama A (2006) Reconstruction of mono-vacancies in carbon nanotubes: atomic relaxation vs. spin polarization. Physica B 376–377:272–275

    Google Scholar 

  213. Chakrapani N, Zhang YM, Nayak SK et al (2003) Chemisorption of acetone on carbon nanotubes. J Phys Chem B 107:9308–9311

    Google Scholar 

  214. Hilding JM, Grulke EA (2004) Heat of adsorption of butane on multiwalled carbon nanotubes. J Phys Chem B 108:13688–13695

    Google Scholar 

  215. Ding D, Wang J, Cao Z et al (2003) Synthesis of carbon nanostructures on nanocrystalline Ni-Ni3P catalyst supported by SiC whiskers. Carbon 41:579–582

    Google Scholar 

  216. Zhou LG, Shi SQ (2003) Adsorption of foreign atoms on Stone-Wales defects in carbon nanotube. Carbon 41:613–615

    Google Scholar 

  217. Meng FY, Zhou LG, Shi SQ et al (2003) Atomic adsorption of catalyst metals on Stone-Wales defects in carbon nanotubes. Carbon 41:2023–2025

    Google Scholar 

  218. Kim SJ, Park YJ, Ra EJ et al (2007) Defect-induced loading of Pt nanoparticles on carbon nanotubes. Appl Phys Lett 90:023114

    Google Scholar 

  219. Sankaran M, Viswanathan B (2006) The role of heteroatoms in carbon nanotubes for hydrogen storage. Carbon 44:2816–2821

    Google Scholar 

  220. Lopez-Corral I, Celis JD, Juan A et al (2012) DFT study of H2 adsorption on Pd-decorated single walled carbon nanotubes with C-vacancies. Int J Hydrogen Ener 37:10156–10164

    Google Scholar 

  221. Gayathri V, Geetha R (2007) Hydrogen adsorption in defected carbon nanotubes. Adsorption 13:53–59

    Google Scholar 

  222. Tang S, Cao Z (2009) Defect-induced chemisorption of nitrogen oxides on (10, 0) single-walled carbon nanotubes: insights from density functional calculations. J Chem Phys 131:114706

    Google Scholar 

  223. Yang Q-H, Hou P-X, Bai S et al (2001) Adsorption and capillarity of nitrogen in aggregated multi-walled carbon nanotubes. Chem Phys Lett 345:18–24

    Google Scholar 

  224. Muris M, Dupont-Pavlovsky N, Bienfait M et al (2001) Where are the molecules adsorbed on single-walled nanotubes? Surf Sci 492:67–74

    Google Scholar 

  225. Hallock RB, Kahng YH (2004) Adsorption of helium and other gases to carbon nanotubes and nanotube bundles. J Low Temp Phys 134:21–30

    Google Scholar 

  226. Zhu J, Wang Y, Li W et al (2007) A density functional study of nitrogen adsorption in single-wall carbon nanotubes. Nanotechnology 18:095707

    Google Scholar 

  227. Heroux L, Krungleviciute V, Calbi MM et al (2006) CF4 on carbon nanotubes: physisorption on grooves and external surfaces. J Phys Chem B 110:12597–12602

    Google Scholar 

  228. Fujiwara A, Ishii K, Suematsu H et al (2001) Gas adsorption in the inside and outside of single-walled carbon nanotubes. Chem Phys Lett 336:205–211

    Google Scholar 

  229. Yang CM, Kanoh H, Kaneko K et al (2002) Adsorption behaviors of HiPco single-walled carbon nanotube aggregates for alcohol vapors. J Phys Chem B 106:8994–8999

    Google Scholar 

  230. Iwata S, Sato Y, Nakai K et al (2007) Novel method to evaluate the carbon network of single-walled carbon nanotubes by hydrogen physisorption. J Phys Chem C 111:14937–14941

    Google Scholar 

  231. Yoo D-H, Rue G-H, Chan MHW et al (2003) Study of nitrogen adsorbed on open-ended nanotube bundles. J Phys Chem B 107:1540–1542

    Google Scholar 

  232. Matranga C, Bockrath B (2005) Hydrogen-bonded and physisorbed CO in single-walled carbon nanotube bundles. J Phys Chem B 109:4853–4864

    Google Scholar 

  233. Ellison MD, Crotty MJ, Koh D et al (2004) Adsorption of NH3 and NO2 on single-walled carbon nanotubes. J Phys Chem B 108:7938–7943

    Google Scholar 

  234. Albesa AG, Fertitta EA, Vicente JL (2010) Comparative study of methane adsorption on single-walled carbon nanotubes. Langmuir 26:786–795

    Google Scholar 

  235. Pantarotto D, Singh R, McCarthy D et al (2004) Functionalized carbon nanotubes for plasmid DNA gene delivery. Angew Chem Int Ed 43:5242–5246

    Google Scholar 

  236. Neves V, Heister E, Costa S et al (2010) Uptake and release of double-walled carbon nanotubes by mammalian cells. Adv Funct Mater 20:3272–3279

    Google Scholar 

  237. Tasis D, Tagmatarchis N, Bianco A et al (2006) Chemistry of carbon nanotubes. Chem Rev 106:1105–1136

    Google Scholar 

  238. Andersen AJ, Wibroe PP, Moghimi SM (2012) Perspectives on carbon nanotube-mediated adverse immune effects. Adv Drug Deliv Rev 64:1700–1705

    Google Scholar 

  239. Nel AE, Mädler L, Velego D et al (2009) Understanding biophysicochemical interactions at the nano–bio interface. Nature Mater 8:543–557

    Google Scholar 

  240. Walsh TR, Tomasio SM (2010) Investigation of the influence of surface defects on peptide adsorption onto carbon nanotubes. Mol BioSyst 6:1707–1718

    Google Scholar 

  241. Dieckmann GR, Dalton AB, Johnson PA et al (2003) Controlled assembly of carbon nanotubes by designed amphiphilic peptide helices. J Am Chem Soc 125:1770–1777

    Google Scholar 

  242. Star A, Steuerman DW, Heath JR et al (2002) Starched carbon nanotubes. Angew Chem Int Ed 41:2508–2512

    Google Scholar 

  243. Zheng M, Jagota A, Semke ED et al (2003) DNA-assisted dispersion and separation of carbon nanotubes. Nature Mater 2:338–342

    Google Scholar 

  244. Sanz V, Tilmacîu C, Soula B et al (2011) Chloroquine-enhanced gene delivery mediated by carbon nanotubes. Carbon 49:5348–5358

    Google Scholar 

  245. Allen BL, Kotchey GP, Chen Y et al (2009) Mechanistic investigations of horseradish peroxidase-catalyzed degradation of single-walled carbon nanotubes. J Am Chem Soc 131:17194–17205

    Google Scholar 

  246. Kagan VE, Konduru NV, Feng W et al (2010) Carbon nanotubes degraded by neutrophil myeloperoxidase induce less pulmonary inflammation. Nature Nanotech 5:354–359

    Google Scholar 

  247. Nunes A, Bussy C, Gherardini L et al (2012) In vivo degradation of functionalized carbon nanotubes after stereotactic administration in the brain cortex. Nanomedicine (Lond) 7:1485–1494

    Google Scholar 

  248. Donaldson K, Murphy F, Schinwald A et al (2011) Identifying the pulmonary hazard of high aspect ratio nanoparticles to enable their safety-by-design. Nanomedicine 6:143–156

    Google Scholar 

  249. Hurt RH, Monthioux M, Kane A (2006) Toxicology of carbon nanomaterials: status, trends, and perspectives. Carbon 44:1028–1033

    Google Scholar 

  250. Card JW, Magnuson BA (2010) A method to assess the quality of studies that examine the toxicity of engineered nanomaterials. Int J Toxicol 29:402–410

    Google Scholar 

  251. de Gabory L, Bareille R, Daculsi R et al (2011) Carbon nanotubes have a deleterious effect on the nose: the first in vitro data. Rhinology 49:445–452

    Google Scholar 

  252. Meunier E, Coste A, Olagnier D et al (2012) Double-walled carbon nanotubes trigger IL-1β release in human monocytes through the Nlrp3 inflammasome activation. Nanomedicine 8:987–995

    Google Scholar 

  253. Bourdiol F, Mouchet F, Perrault A et al (2013) Biocompatible polymer-assisted dispersion of multi walled carbon nanotubes in water, application to the investigation of their ecotoxicity using Xenopus laevis amphibian larvae. Carbon 54:175–191

    Google Scholar 

  254. Bianco A, Prato M (2003) Can carbon nanotubes be considered useful tools for biological applications? Adv Mater 15:1765–1768

    Google Scholar 

  255. Berciaud S, Cognet L, Lounis B (2008) Luminescence decay and the absorption cross section of individual single-walled carbon nanotubes. Phys Rev Lett 101:077402

    Google Scholar 

  256. Dolatabadi EN, Omidi J, Losic D (2011) Carbon nanotubes as an advanced drug and gene delivery nanosystem. Current Nanosci 7:297–314

    Google Scholar 

  257. Zhao B, Hu H, Mandal SK et al (2005) A bone mimic based on the self-assembly of hydroxyapatite on chemically functionalized single-walled carbon nanotubes. Chem Mater 17:3235–3241

    Google Scholar 

  258. Béduer A, Seichepine F, Flahaut E et al (2012) Elucidation of the role of carbon nanotube patterns on the development of cultured neuronal cells. Langmuir 28:17363–17371

    Google Scholar 

  259. Lin Y, Li H, Gu L et al (2008) Chemistry of carbon nanotubes. In: Basiuk EV (ed) Bioapplications of carbon nanotubes. American Scientific, Basiuk

    Google Scholar 

  260. Saito R, Dresselhaus G, Dresselhaus MS (1998) Physical properties of carbon nanotubes. Imperial College Press, London

    Google Scholar 

  261. Harris PJF (1999) Carbon nanotubes and related structures. Cambridge University Press, Cambridge

    Google Scholar 

  262. Tomanek D, Enbody RJ (eds) (2002) Science and applications of nanotubes. Kluwer, New York

    Google Scholar 

  263. Meyyapan M (ed) (2004) Carbon nanotubes; science and applications. CRC Press, Boca Raton

    Google Scholar 

  264. O’Connell MJ (ed) (2006) Carbon nanotubes: properties and applications. CRC Press/Taylor & Francis, Boca Raton

    Google Scholar 

  265. Gogotsi Y (ed) (2006) Nanotubes and nanofibers. CRC Press, Boca Raton

    Google Scholar 

  266. Jorio A, Dresselhaus MS, Dresselhaus G (2008) Carbon nanotubes. In: Topics in applied physics, vol 111, Springer, Heidelberg

    Google Scholar 

  267. Saito S, Zettl A (eds) (2008) Carbon nanotubes – quantum cylinders of graphene. Elsevier, Amsterdam

    Google Scholar 

  268. Harris PFJ (2009) Carbon nanotube science: synthesis, properties, and applications. Cambridge University Press, Cambridge

    Google Scholar 

  269. Yap YK (2009) B-C-N nanotubes and related nanostructures. In: Wang M, Waag A, Salamo G et al (eds) Lecture notes in Nanosc Science Technology, 6, Springer, Dordrecht

    Google Scholar 

  270. Guldi DM, Martin N (eds) (2010) Carbon nanotubes and related structures: synthesis, characterization, functionalization, and applications. Wiley-VCH, Weinheim

    Google Scholar 

  271. Naraghi M (ed) (2011) Carbon nanotubes – growth and applications. InTech, Rijeka

    Google Scholar 

  272. Bianco S (ed) (2011) Carbon nanotubes – from research to applications. InTech, Rijeka

    Google Scholar 

  273. Monthioux M (2012) Meta-nanotubes: synthesis, properties, and applications. Wiley-Blackwell, Chichester

    Google Scholar 

  274. Lee SM, Lee YH (2000) Hydrogen storage in single-walled carbon nanotubes. Appl Phys Lett 76:2877–2879

    Google Scholar 

  275. Dresselhaus MS, Williams KA, Eklund PC (1999) Advanced materials for energy storage – hydrogen adsorption in carbon materials. Mater Res Soc Bull 24:45–50

    Google Scholar 

  276. Cheng H, Pez GP, Cooper AC (2001) Mechanism of hydrogen sorption in single-walled carbon nanotubes. J Amer Chem Soc 123:5845–5846

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Monthioux .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Monthioux, M. et al. (2014). Properties of Carbon Nanotubes. In: Bhushan, B., Luo, D., Schricker, S., Sigmund, W., Zauscher, S. (eds) Handbook of Nanomaterials Properties. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31107-9_24

Download citation

Publish with us

Policies and ethics