Skip to main content

Nanomanipulation and Nanotribology of Nanoparticles and Nanotubes Using Atomic Force Microscopy

  • Chapter
  • First Online:
Handbook of Nanomaterials Properties

Abstract

Nanoparticles and nanotubes are used in applications that require controlled manipulation and targeting in biomedicine and the oil industry and tribology on the macro- to nanoscale. Knowledge of interfacial friction and wear is important for determining their suitability for various applications. An overview of friction and wear of Au and carbon nanohorn (CNH) nanoparticles and MoS2 and WS2 nanotubes under dry and low viscosity liquid environments is presented in this chapter. Experiments on the nanoscale were performed using an atomic force microscope (AFM) in single- and multiple-nano-object contact with an AFM tip. In single-nano-object contact, nano-objects were laterally manipulated, and in multiple-nano-object contact, a tip attached to a glass sphere was slid over several nano-objects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 629.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 799.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akbulut M, Belman N, Golan Y, Israelachvili JN (2006) Frictional properties of confined nanorods. Adv Mater 18:2589–2592

    Article  Google Scholar 

  2. Berlin JM, Yu J, Lu W, Walsh EE, Zhang L, Zhang P, Chen W, Kan AT, Wong MS, Tomson MB, Tour JM (2011) Engineered nanoparticles for hydrocarbon detection in oil-field rocks. Energy Environ Sci 4:505–509

    Article  Google Scholar 

  3. Bhushan B (ed) (2010) Springer handbook of nanotechnology, 3rd edn. Springer, Heidelberg

    Google Scholar 

  4. Bhushan B (ed) (2011) Nanotribology and nanomechanics, I and II, 3rd edn. Springer, Heidelberg

    Google Scholar 

  5. Bhushan B, Gupta BK (1991) Handbook of tribology: materials, coatings, and surface treatments. McGraw-Hill, New York

    Google Scholar 

  6. Bhushan B, Sundararajan S (1998) Micro/nanoscale friction and wear mechanisms of thin films using atomic force and friction force microscopy. Acta Mater 46:3793–3804

    Article  Google Scholar 

  7. Burton Z, Bhushan B (2005) Hydrophobicity, adhesion and friction properties of nanopatterned polymers and scale dependence for MEMS/NEMS. Nano Lett 5:1607–1613

    Article  Google Scholar 

  8. Cayre OJ, Paunov VN (2004) Contact angles of colloid silica and gold particles at air–water and oil–water interfaces determined with the gel trapping technique. Langmuir 20:9594–9599

    Article  Google Scholar 

  9. Cizaire L, Vacher B, Mogne T, Le Martin JM, Rapoport L, Margolin A, Tenne R (2002) Mechanisms of ultra-low friction by hollow inorganic fullerene-like MoS2 nanoparticles. Surf Coat Technol 160:282–287

    Article  Google Scholar 

  10. St Dennis JE, Jin K, John VT, Pesika NS (2011) Carbon microspheres as ball bearings in aqueous-based lubrication. ACS Appl Mater Interfaces 3:2215–2218

    Article  Google Scholar 

  11. Dietzel D, Monninghoff GS, Jansen L, Fuchs H, Ritter C, Scharwz UD, Schirmeisen A (2007) Interfacial friction obtained by lateral manipulation of nanoparticles using atomic force microscopy techniques. J Appl Phys 102:084306

    Article  Google Scholar 

  12. Duncan R (2003) The dawning era of polymer therapeutics. Nat Rev Drug Discov 2:347–360

    Article  Google Scholar 

  13. Falvo MR, Taylor RM II, Helser A, Chi V, Brooks FP Jr, Washburn S, Superfine R (1999) Nanometre-scale rolling and sliding of carbon nanotubes. Nature 397:236–238

    Article  Google Scholar 

  14. Ferrari M (2005) Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer 5:161–171

    Article  Google Scholar 

  15. Gourdon D, Yasa M, Godfrey Alig AR, Li Y, Safinya CR, Israelachvili JN (2004) Mechanical and structural properties of BaCrO4 nanorod films under confinement and shear. Adv Funct Mater 14:238–242

    Article  Google Scholar 

  16. Greenberg R, Halperin G, Etsion I, Tenne R (2004) The effect of WS2 nanoparticles on friction reduction in various lubrication regimes. Tribol Lett 17:179–186

    Article  Google Scholar 

  17. Hu HS, Dong JX, Chen GX (1998) Study on antiwear and reducing friction additive of nanometer ferric oxide. Tribol Int 31:355–360

    Article  Google Scholar 

  18. Hui X, Regnier S (2012) High-efficiency automated nanomanipulation with parallel imaging/manipulation force microscopy. IEEE Trans Nanotechnol 11:21–33

    Article  Google Scholar 

  19. Irvine DJ (2011) Drug delivery: one nanoparticle, one kill. Nat Mater 10:342–343

    Article  Google Scholar 

  20. Joly-Pottuz L, Dassenoy F, Belin M, Vacher B, Martin JM, Fleischer N (2005) Ultralow-friction and wear properties of IF-WS2 under boundary lubrication. Tribol Lett 18:477–485

    Article  Google Scholar 

  21. Kalin M, Kogovšek J, Remškar M (2012) Mechanisms and improvements in the friction and wear behavior using MoS2 nanotubes as potential oil additives. Wear 280–281:36–45

    Article  Google Scholar 

  22. Lahouij I, Dassenoy F, de Knoop L, Martin J-M, Vacher B (2011) In situ TEM observation of the behavior of an individual fullerene-like MoS2 nanoparticle in a dynamic contact. Tribol Lett 42:133–140

    Article  Google Scholar 

  23. Lide DR (ed) (2009) CRC handbook of chemistry and physics, 90th edn. CRC Press, Boca Raton

    Google Scholar 

  24. Lüthi R, Meyer E, Haefke H, Howald L, Gutmannsbauer W, Güntherodt H-J (1994) Sled-type motion on the nanometer scale: determination of dissipation and cohesive energies of C60. Science 266:1979–1981

    Article  Google Scholar 

  25. Maharaj D, Bhushan B (2012) Effect of spherical Au nanoparticles on nanofriction and wear reduction in dry and liquid environments. Beilstein J Nanotechnol 3:759–772

    Article  Google Scholar 

  26. Maharaj D, Bhushan B (2013) Effect of MoS2 and WS2 nanotubes on nanofriction and wear reduction in dry and liquid environments. Tribol Lett 49:323–339

    Article  Google Scholar 

  27. Maharaj D, Bhushan B (2013) Effect of carbon nanohorns on nanofriction and wear reduction in dry and liquid environments. J Colloid Interface Sci 400:147–160

    Article  Google Scholar 

  28. Matteo C, Candido P, Vera R, Francesca V (2012) Current and future nanotech applications in the oil industry. Am J Appl Sci 9:784–793

    Article  Google Scholar 

  29. Mougin K, Gnecco E, Rao A, Cuberes MT, Jayaraman S, McFarland EW, Haidara H, Meyer E (2008) Manipulation of gold nanoparticles: influence of surface chemistry, temperature, and environment (vacuum versus ambient atmosphere). Langmuir 24:1577–1581

    Article  Google Scholar 

  30. Palacio M, Bhushan B (2008) A nanoscale friction investigation during manipulation of nanoparticles in controlled environments. Nanotechnology 19:315710

    Article  Google Scholar 

  31. Panyala NR, Pena-Mendez EM, Havel J (2009) Gold and nano-gold in medicine: overview, toxicology and perspectives. J Appl Biomed 7:75–91

    Google Scholar 

  32. Rapoport L, Lvovsky M, Lapsker I, Leshinsky V, Volovik Y, Feldman Y, Zak A, Tenne R (2001) Slow release of fullerene-like WS2 nanoparticles as a superior solid lubrication mechanism in composite matrices. Adv Eng Mater 3:71–75

    Article  Google Scholar 

  33. Rapoport L, Nepomnyashchy O, Lapsker I, Verdyan A, Soifer Y, Popovitz-Biro R, Tenne R (2005) Friction and wear of fullerene-like WS2 under severe contact conditions: friction of ceramic materials. Tribol Lett 19:143–149

    Article  Google Scholar 

  34. Resch R, Lewis D, Meltzer S, Montoya N, Koel BE, Madhukar A, Requicha AA, Will P (2000) Manipulation of gold nanoparticles in liquid environments using scanning force microscopy. Ultramicroscopy 82:135–139

    Article  Google Scholar 

  35. Ritter C, Heyde M, Stegemann B, Rademann K, Schwarz UD (2005) Contact-area dependence of frictional forces: moving adsorbed antimony nanoparticles. Phys Rev B 71:085405

    Article  Google Scholar 

  36. Ryoo S, Rahmani AR, Yoon KY, Prodanovic M, Kotsmar C, Milner TE, Huh C (2012) Theoretical and experimental investigation of the motion of multiphase fluids containing paramagnetic nanoparticles in porous media. J Petrol Sci Eng 81:129–144

    Article  Google Scholar 

  37. Schwarz UD, Zwörner O, Köster P, Wiesendanger R (1997) Quantitative analysis of the frictional properties of solid materials at low loads. I. Carbon compounds. Phys Rev B 56:6987–6996

    Article  Google Scholar 

  38. Sitti M (2004) Atomic force microscope probe based controlled pushing for nanotribological characterization. IEEE/ASME Trans Mechatron 9:343–349

    Article  Google Scholar 

  39. Tanaka A, Umeda K, Yudasaka M, Suzuki M, Ohana T, Yumura M, Iijima S (2005) Friction and wear of carbon nanohorn-containing polyimide composites. Tribol Lett 19:135–142

    Article  Google Scholar 

  40. Tevet O, Von-Huth P, Popovitz-Biro R, Rosentsveig R, Wagner HD, Tenne R (2011) Friction mechanism of individual multilayered nanoparticles. Proc Natl Acad Sci U S A 108:19901–19906

    Article  Google Scholar 

  41. Thanikaivelan P, Narayanan NT, Pradhan BK, Ajayan PM (2012) Collagen based magnetic nanocomposites for oil removal applications. Sci Rep 2:230. doi:10.1038/srep00230

    Article  Google Scholar 

  42. Wang S, Zhang Y, Abidi N, Cabrales L (2009) Wettability and surface free energy of graphene films. Langmuir 25:11078–11081

    Article  Google Scholar 

  43. Zhang J, Zhang J (2013) Surfactant inducing phase change of ZnO nanorods to low friction. Tribo Lett 49:77–83

    Article  Google Scholar 

  44. Zhang S, Zeng XT, Tang ZG, Tan MJ (2002) Exploring the antisticking properties of solid lubricant thin films in transfer molding. Int J Mod Phys B 16:1080–1085

    Article  Google Scholar 

  45. Singh DP, Polychronopoulou K, Rebholz C, Aouadi SM (2010) Room temperature synthesis and high temperature frictional study of silver vanadate nanorods. Nanotechnology 21:325601

    Article  Google Scholar 

  46. Bhushan B (2013) Introduction to tribology, 2nd ed. Wiley, New York

    Book  Google Scholar 

  47. Fuerstenau MC, Han KN (ed) (2003) Principles of mineral processing, society for mining, metallurgy, and exploration (SME). Littleton, Colorado

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bharat Bhushan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Maharaj, D., Bhushan, B. (2014). Nanomanipulation and Nanotribology of Nanoparticles and Nanotubes Using Atomic Force Microscopy. In: Bhushan, B., Luo, D., Schricker, S., Sigmund, W., Zauscher, S. (eds) Handbook of Nanomaterials Properties. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31107-9_18

Download citation

Publish with us

Policies and ethics