Skip to main content

Computational Materials Science of Bionanomaterials: Structure, Mechanical Properties and Applications of Elastin and Collagen Proteins

  • Chapter
  • First Online:
Handbook of Nanomaterials Properties

Abstract

Elastin and collagen are two major protein components found in the extracellular matrix (ECM) in various tissues of the body. Collagen is the most abundant protein in the ECM, providing necessary structural support to tissues. Elastin, by contrast, provides elasticity and recoil, very important in tissues such as the lungs, blood vessels, and skin. Both proteins are essential to healthy function, and mutations and deficiencies in either one may lead to disease. In this chapter, we consider the hierarchical assembly and structure of elastin and collagen and review the mechanical properties of both proteins across different length scales. We then consider key computational studies that have provided insight into specific functions or dysfunctions of elastin and collagen. In our focus on elastin, we provide an overview of computational studies that have explored the source of elastin’s elasticity and identified its peculiar property of assuming increased structure upon heating, a property termed the inverse temperature transition, significant for potential application of elastin in novel biomaterials. In our focus on collagen, we discuss the rare genetic disorder, osteogenesis imperfecta, also known as brittle bone disease, where mechanical and structural effects have been identified through experimental and computational studies at multiple scales.

These authors Anna Tarakanova and Shu-Wei Chang contributed equally to this work

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 629.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 799.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tarakanova A, Buehler MJ (2013) Molecular modeling of protein materials: case study of elastin. Modelling and Simulation in Materials Science and Engineering 21(6):063001

    Google Scholar 

  2. Rosenbloom J et al (1995) Structure of the elastin gene. Ciba Foundation Symposium 192: The Molecular Biology and Pathology of Elastic Tissues 59–80

    Google Scholar 

  3. Debelle L, Alix AJP (1999) The structures of elastins and their function. Biochimie 81(10):981–994

    Article  Google Scholar 

  4. Wise SG, Mithieux SM, Weiss AS (2009) Engineered tropoelastin and elastin-based biomaterials. Adv Protein Chem Struct Biol 78:1–24

    Article  Google Scholar 

  5. Muiznieks LD, Weiss AS, Keeley FW (2010) Structural disorder and dynamics of elastin. Biochem Cell Biol Biochim Biol Cell 88(2):239–250

    Article  Google Scholar 

  6. Kozel BA et al (2006) Elastic fiber formation: a dynamic view of extracellular matrix assembly using timer reporters. J Cell Physiol 207(1):87–96

    Article  Google Scholar 

  7. Baldock C et al (2011) Shape of tropoelastin, the highly extensible protein that controls human tissue elasticity. Proc Natl Acad Sci USA 108(11):4322–4327

    Article  Google Scholar 

  8. Ushiki T (2002) Collagen fibers, reticular fibers and elastic fibers. A comprehensive understanding from a morphological viewpoint. Arch Histol Cytol 65(2):109–126

    Article  Google Scholar 

  9. Pepe A, Bochiechio B, Tamburro AM (2007) Supramolecular organization of elastin and elastin-related nanostructured biopolymers. Nanomedicine 2(2):203–218

    Article  Google Scholar 

  10. Kewley MA, Steven FS, Williams G (1977) Presence of fine elastin fibrils within elastin fiber observed by scanning electron-microscopy. J Anat 123:129–134

    Google Scholar 

  11. Koenders MMJF et al (2009) Microscale mechanical properties of single elastic fibers: the role of fibrillin-microfibrils. Biomaterials 30(13):2425–2432

    Article  Google Scholar 

  12. Lillie MA, David GJ, Gosline JM (1998) Mechanical role of elastin-associated microfibrils in pig aortic elastic tissue. Connect Tissue Res 37(1–2):121–141

    Article  Google Scholar 

  13. Sherebrin MH (1983) Mechanical anisotropy of purified elastin from the thoracic aorta of dog and sheep. Can J Phys Pharmacol 61(6):539–545

    Article  Google Scholar 

  14. Aaron BB, Gosline JM (1981) Elastin as a random-network elastomer – a mechanical and optical analysis of single elastin fibers. Biopolymers 20(6):1247–1260

    Article  Google Scholar 

  15. Hoeve CA, Flory PJ (1974) The elastic properties of elastin. Biopolymers 13(4):677–686

    Article  Google Scholar 

  16. Hoeve CA, Flory PJ (1958) The elastic properties of elastin. J Am Chem Soc 80:6523–6526

    Article  Google Scholar 

  17. Partridge SM (1962) Elastin. Adv Protein Chem 17:227–302

    Article  Google Scholar 

  18. Urry DW, Venkatachalam CM (1983) A librational entropy mechanism for elastomers with repeating peptide sequences in helical array. Int J Quantum Chem 10:81–93

    Google Scholar 

  19. Chang DK, Urry DW (1988) Molecular dynamics calculations on relaxed and extended states of the polypentapei’tide of elastin. Chem Phys Lett 147(4):395–400

    Article  Google Scholar 

  20. Gosline JM, Yew FF, Weisfogh T (1975) Reversible structural-changes in a hydrophobic protein, elastin, as indicated by fluorescence probe analysis. Biopolymers 14(9):1811–1826

    Article  Google Scholar 

  21. Wasserman ZR, Salemme FR (1990) A molecular dynamics investigation of the elastomeric restoring force in elastin. Biopolymers 29:1613–1631

    Article  Google Scholar 

  22. Li B, Daggett V (2001) Hydrophobic hydration is an important source of elasticity of elastin. J Am Chem Soc 123:11991–11998

    Article  Google Scholar 

  23. Li B, Alonso DOV, Daggett V (2002) Stabilization of globular proteins via introduction of temperature-activated elastin-based switches. Structure 10(7):989–998

    Article  Google Scholar 

  24. Huang JX et al (2012) On the inverse temperature transition and development of an entropic elastomeric force of the elastin mimetic peptide [LGGVG](3,7). J Chem Phys 136(8):085101

    Article  Google Scholar 

  25. Rauscher S et al (2006) Proline and Glycine control protein self-organization into elastomeric or amyloid fibrils. Structure 14(11):1667–1676

    Article  Google Scholar 

  26. Ma X et al (2012) Thermal hysteresis in the backbone and side-chain dynamics of the elastin mimetic peptide [VPGVG](3) by H-2 NMR. J Phys Chem B 116(1):555–564

    Article  Google Scholar 

  27. Cox BA, Starcher BC, Urry DW (1973) Coacervation of α-elastin results in fiber formation. Biochim Biophys Acta 317:209–213

    Article  Google Scholar 

  28. Urry DW (1988) Entropic elastic processes in protein mechanisms.1. elastic structure due to an inverse temperature transition and elasticity due to internal chain dynamics. J Protein Chem 7(1):1–34

    Article  Google Scholar 

  29. Urry DW (1995) Elastic biomolecular machines. Sci Am 272(1):64–69

    Article  Google Scholar 

  30. Li B, Alonso DO, Daggett V (2001) The molecular basis for the inverse temperature transition of elastin. J Mol Biol 305(3):581–592

    Article  Google Scholar 

  31. Rousseau R et al (2004) Temperature-dependent conformational transitions and hydrogen-bond dynamics of the elastin-like octapeptide GVG(VPGVG): a molecular-dynamics study. Biophys J 86(3):1393–1407

    Article  Google Scholar 

  32. Arkin H, Bilsel M (2010) Conformational transition in elastin polypeptide with different residue length. AIP Conf Proc 1203:1211–1216

    Google Scholar 

  33. Arkin H, Bilsel M (2009) Conformational transition in elastin polypeptide with different residue length. In: 7th international conference of the Balkan physical union, vols 1 and 2. 1203:1211–1216

    Google Scholar 

  34. Fratzl P (ed) (2008) Collagen: structure and mechanics. Springer, New York

    Google Scholar 

  35. Buehler MJ, Yung YC (2009) Deformation and failure of protein materials in physiologically extreme conditions and disease. Nat Mater 8(3):175–188

    Article  Google Scholar 

  36. Rainey J, Wen C, Goh M (2002) Hierarchical assembly and the onset of banding in fibrous long spacing collagen revealed by atomic force microscopy. Matrix Biol 21(8):647–660

    Article  Google Scholar 

  37. Eppell SJ et al (2006) Nano measurements with micro-devices: mechanical properties of hydrated collagen fibrils. J R Soc Interface 3(6):117–121

    Article  Google Scholar 

  38. Rainey J, Goh M (2002) A statistically derived parameterization for the collagen triple-helix. Protein Sci 11(11):2748–2754

    Article  Google Scholar 

  39. Huang CC et al (1998) The object technology framework: an object-oriented interface to molecular data and its application to collagen. Pac Symp Biocomput 349–361

    Google Scholar 

  40. Rainey J, Goh M (2004) An interactive triple-helical collagen builder. Bioinformatics 20(15):2458–2459

    Article  Google Scholar 

  41. Persikov AV, Ramshaw JAM, Brodsky B (2005) Prediction of collagen stability from amino acid sequence. J Biol Chem 280(19):19343–19349

    Article  Google Scholar 

  42. Boote C et al (2008) Collagen organization in the chicken cornea and structural alterations in the retinopathy, globe enlarged (rge) phenotype – an X-ray diffraction study. J Struct Biol 161(1):1–8

    Article  Google Scholar 

  43. Orgel JPRO et al (2006) Microfibrillar structure of type I collagen in situ. Proc Natl Acad Sci 103(24):9001–9005

    Article  Google Scholar 

  44. Sweeney SM et al (2008) Candidate cell and matrix interaction domains on the collagen fibril, the predominant protein of vertebrates. J Biol Chem 283(30):21187–21197

    Article  Google Scholar 

  45. Brodsky B, Eikenberry EF, Cassidy K (1980) An unusual collagen periodicity in skin. Biochim Biophys Acta Protein Struct 621(1):162–166

    Article  Google Scholar 

  46. Stinson RH, Sweeny PR (1980) Skin collagen has an unusual d-spacing. Biochim Biophys Acta Protein Struct 621(1):158–161

    Article  Google Scholar 

  47. Gathercole LJ, Shah JS, Nave C (1987) Skin-tendon differences in collagen D-period are not geometric or stretch-related artefacts. Int J Biol Macromol 9(3):181–183

    Article  Google Scholar 

  48. Sun YL, Luo ZP, An KN (2001) Stretching short biopolymers using optical tweezers. Biochem Biophys Res Commun 286(4):826–830

    Article  Google Scholar 

  49. Sun YL et al (2004) Stretching type II collagen with optical tweezers. J Biomech 37(11):1665–1669

    Article  Google Scholar 

  50. Buehler MJ, Wong SY (2007) Entropic elasticity controls nanomechanics of single tropocollagen molecules. Biophys J 93(1):37–43

    Article  Google Scholar 

  51. Sun YL et al (2002) Direct quantification of the flexibility of type I collagen monomer. Biochem Biophys Res Commun 295(2):382–386

    Article  Google Scholar 

  52. Chang S-W, Sandra J, Shefelbine SJ, Buehler MJ (2012) Structural and mechanical differences between collagen homo- and heterotrimers: relevance for the molecular origin of brittle bone disease. Biophys J 102(3):640–648

    Article  Google Scholar 

  53. Chang S-W et al (2012) Molecular mechanism of force induced stabilization of collagen against enzymatic breakdown. Biomaterials 33(15):3852–3859

    Article  Google Scholar 

  54. Bodian DL et al (2011) Molecular dynamics simulations of the full triple helical region of collagen type I provide an atomic scale view of the protein’s regional heterogeneity. Pac Symp Biocomput 193–204

    Google Scholar 

  55. Adhikari AS, Chai J, Dunn AR (2011) Mechanical load induces a 100-fold increase in the rate of collagen proteolysis by MMP-1. J Am Chem Soc 133(6):1686–1689

    Article  Google Scholar 

  56. Adhikari AS, Glassey E, Dunn AR (2012) Conformational dynamics accompanying the proteolytic degradation of trimeric collagen I by collagenases. J Am Chem Soc 134(32):13259–13265

    Article  Google Scholar 

  57. Camp RJ et al (2011) Molecular mechanochemistry: low force switch slows enzymatic cleavage of human type I collagen monomer. J Am Chem Soc 133(11):4073–4078

    Article  Google Scholar 

  58. Hofmann H et al (1984) Localization of flexible sites in thread-like molecules from electron-micrographs – comparison of interstitial, basement-membrane and intima collagens. J Mol Biol 172(3):325–343

    Article  Google Scholar 

  59. Sasaki N, Odajima S (1996) Stress–strain curve and Young’s modulus of a collagen molecule as determined by the X-ray diffraction technique. J Biomech 29(5):655–658

    Article  Google Scholar 

  60. Cusack S, Miller A (1979) Determination of the elastic-constants of collagen by brillouin light-scattering. J Mol Biol 135(1):39–51

    Article  Google Scholar 

  61. Harley R et al (1977) Phonons and elastic-moduli of collagen and muscle. Nature 267(5608):285–287

    Article  Google Scholar 

  62. Gautieri A et al (2011) Hierarchical structure and nanomechanics of collagen microfibrils from the atomistic scale up. Nano Lett 11(2):757–766

    Article  Google Scholar 

  63. Beck K et al (2000) Destabilization of osteogenesis imperfecta collagen-like model peptides correlates with the identity of the residue replacing glycine. Proc Natl Acad Sci 97(8):4273–4278

    Article  Google Scholar 

  64. Gautieri A et al (2012) Osteogenesis imperfecta mutations lead to local tropocollagen unfolding and disruption of H-bond network. RSC Advances 2(9):3890–3896

    Article  Google Scholar 

  65. Gautieri A et al (2009) Molecular and mesoscale mechanisms of osteogenesis imperfecta disease in collagen fibrils. Biophys J 97(3):857–865

    Article  Google Scholar 

  66. Camacho NP et al (1999) The material basis for reduced mechanical properties in oim mice bones. J Bone Miner Res 14(2):264–272

    Article  Google Scholar 

  67. Miles CA et al (2002) The role of alpha2 chain in the stabilization of the collagen type I heterotrimer: a study of the type I homotrimer in oim mouse tissues. J Mol Biol 321:797–805

    Article  Google Scholar 

  68. Waterhouse A et al (2011) Elastin as a nonthrombogenic biomaterial. Tissue Engr Part B-Rev 17(2):93–99

    Article  Google Scholar 

  69. Glowacki J, Mizuno S (2008) Collagen scaffolds for tissue engineering. Biopolymers 89(5):338–344

    Article  Google Scholar 

  70. Wise SG et al (2005) Specificity in the coacervation of tropoelastin: solvent exposed lysines. J Struct Biol 149(3):273–281

    Article  Google Scholar 

  71. Tarakanova A, Weiss A, Buehler MJ (2013) Elastic network model of tropoelastin implicated bridge region in assembly and cell-binding (In Preparation)

    Google Scholar 

  72. Orgel JPRO et al (2006) Microfibrillar structure of type I collagen in situ. Proc Natl Acad Sci USA 103(24):9001–9005

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus J. Buehler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tarakanova, A., Chang, SW., Buehler, M.J. (2014). Computational Materials Science of Bionanomaterials: Structure, Mechanical Properties and Applications of Elastin and Collagen Proteins. In: Bhushan, B., Luo, D., Schricker, S., Sigmund, W., Zauscher, S. (eds) Handbook of Nanomaterials Properties. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31107-9_14

Download citation

Publish with us

Policies and ethics