Skip to main content

Biofunctionalization of Nanoporous Alumina Substrates

  • Chapter
  • First Online:
Handbook of Nanomaterials Properties

Abstract

Anodic aluminum oxide (AAO) is a nanoporous material with well-defined hexagonally ordered, cylindrical parallel pores running straight through the material’s thickness. Owing to the transparency of AAO, thin-films of this material have been explored for in situ monitoring of biological relevant processes occurring within these nanoporous templates by using optical waveguide spectroscopy (OWS) and fluorescence microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 629.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 799.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alvarez SD, Li CP, Chiang CE, Schuller IK, Sailor MJ (2009) Acs Nano 3:3301–3307

    Google Scholar 

  2. Haberkorn N, Gutmann JS, Theato P (2009) Acs Nano 3:1415–1422

    Google Scholar 

  3. Haberkorn N, Lechmann MC, Sohn BH, Char K, Gutmann JS, Theato P (2009) Macromol Rapid Commun 30:1146–1166

    Google Scholar 

  4. Lee J, Orilall MC, Warren SC, Kamperman M, Disalvo FJ, Wiesner U (2008) Nat Mat 7:222–228

    Google Scholar 

  5. Horn C, Steinem C (2005) Biophys J 89:1046–1054

    Google Scholar 

  6. Kepplinger C, Höfer I, Steinem C (2009) Chem Phys Lipids 160:109–113

    Google Scholar 

  7. Lazzara TD, Mey I, Steinem C, Janshoff A (2011) Anal Chem 83:5624–5630

    Google Scholar 

  8. Schmitt EK, Vrouenraets M, Steinem C (2006) Biophys J 91:2163–2171

    Google Scholar 

  9. Schmitt EK, Weichbrodt C, Steinem C (2009) Soft Matter 5:3347–3353

    Google Scholar 

  10. O’Sullivan JP, Wood GC (1970) Proc R Soc Lond A 317:511–543

    Google Scholar 

  11. Mikulskas I, Juodkazis S, Tomasiunas R, Dumas JG (2001) Adv Mater 13:1574

    Google Scholar 

  12. Martin CR (1994) Science 266:1961–1966

    Google Scholar 

  13. Nielsch K, Choi J, Schwirn K, Wehrspohn RB, Gösele U (2002) Nano Lett 2:677–680

    Google Scholar 

  14. Li AP, Müller F, Birner A, Nielsch K, Gösele U (1998) J Appl Phys 84:6023–6026

    Google Scholar 

  15. Bowen WR, Sharif AO (1996) Proc R Soc Lond A 452:2121–2140

    Google Scholar 

  16. Chen W, Yuan JH, Xia XH (2005) Anal Chem 77:8102–8108

    Google Scholar 

  17. Han JY, Fu JP, Schoch RB (2008) Lab Chip 8:23–33

    Google Scholar 

  18. Jiang XQ, Mishra N, Turner JN, Spencer MG (2008) Microfluid Nanofluid 5:695–701

    Google Scholar 

  19. Roy P, Dey T, Lee K, Kim D, Fabry B, Schmuki P (2010) J Am Chem Soc 132:7893–7895

    Google Scholar 

  20. Vlassiouk I, Krasnoslobodtsev A, Smirnov S, Germann M (2004) Langmuir 20:9913–9915

    Google Scholar 

  21. Wang Y, Angelatos AS, Dunstan DE, Caruso F (2007) Macromolecules 40:7594–7600

    Google Scholar 

  22. Bonanno LM, Kwong TC, DeLouise LA (2010) Anal Chem 82:9711–9718

    Google Scholar 

  23. Hotta K, Yamaguchi A, Teramae N (2010) Anal Chem 82:6066–6073

    Google Scholar 

  24. Schwartz MP, Alvarez SD, Sailor MJ (2007) Anal Chem 79:327–334

    Google Scholar 

  25. Wang ML, Meng GW, Huang Q, Li MT, Li ZB, Tang CL (2011) Analyst 136:278–281

    Google Scholar 

  26. Yamaguchi A, Hotta K, Teramae N (2009) Anal Chem 81:105–111

    Google Scholar 

  27. Schmid G (2002) J Mater Chem 12:1231–1238

    Google Scholar 

  28. Metzger RM, Konovalov VV, Sun M, Xu T, Zangari G, Xu B, Benakli M, Doyle WD (2000) IEEE Trans Magn 36:30–35

    Google Scholar 

  29. Zhang ZB, Ying JY, Dresselhaus MS (1998) J Mat Res 13:1745–1748

    Google Scholar 

  30. Hou SF, Wang JH, Martin CR (2005) Nano Lett 5:231–234

    Google Scholar 

  31. Lei Y, Cai WP, Wilde G (2007) Prog Mater Sci 52:465–539

    Google Scholar 

  32. Rabin O, Herz PR, Lin YM, Akinwande AI, Cronin SB, Dresselhaus MS (2003) Adv Funct Mat 13:631–638

    Google Scholar 

  33. Biring S, Tsai K-T, Sur UK, Wang Y-L (2008) Nanotechnology 19:015304

    Google Scholar 

  34. Lita AE, Sanchez JJE (1999) J App Phys 85:876

    Google Scholar 

  35. Masuda H, Fukuda K (1995) Science 268:1466–1468

    Google Scholar 

  36. Masuda H, Hasegwa F, Ono S (1997) J Electrochem Soc 144:L127–L130

    Google Scholar 

  37. Chu SZ, Wada K, Inoue S, Isogai M, Yasumori A (2005) Adv Mater 17:2115

    Google Scholar 

  38. Kovacs GJ, Scott GD (1978) Appl Opt 17:3314–3322

    Google Scholar 

  39. Aust EF, Knoll W (1993) J Appl Phys 73:2705–2708

    Google Scholar 

  40. Hickel W, Knoll W (1990) Appl Phys Lett 57:1286–1288

    Google Scholar 

  41. Kim DH, Lau KHA, Robertson JWF, Lee OJ, Jeong U, Lee JI, Hawker CJ, Russell TP, Kim JK, Knoll W (2005) Adv Mater 17:2442

    Google Scholar 

  42. Knoll W (1998) Annu Rev Phys Chem 49:569–638

    Google Scholar 

  43. Dürr M, Menges G, Knoll W, Yasuda A, Nelles G (2007) Appl Phys Lett 91:021113–021115

    Google Scholar 

  44. Lau KHA, Tan LS, Tamada K, Sander MS, Knoll W (2004) J Phys Chem B 108:10812–10818

    Google Scholar 

  45. Lau KHA, Duran H, Knoll W (2009) J Phys Chem B 113:3179–3189

    Google Scholar 

  46. Cameron PJ, Jenkins ATA, Knoll W, Marken F, Milsom EV, Williams TL (2008) J Mater Chem 18:4304–4310

    Google Scholar 

  47. Fujimaki M, Rockstuhl C, Wang XM, Awazu K, Tominaga J, Ikeda T, Ohki Y, Komatsubara T (2007) Microelectron Eng 84:1685–1689

    Google Scholar 

  48. Reimhult E, Kumar K, Knoll W (2007) Nanotechnology 18:275303

    Google Scholar 

  49. Egan WG, Aspnes DE (1982) Thin Solid Films 89:249–262

    Google Scholar 

  50. Foss CA, Tierney MJ, Martin CR (1992) J Phys Chem 96:9001–9007

    Google Scholar 

  51. Kim DH, Lau KHA, Joo W, Peng J, Jeong U, Hawker CJ, Kim JK, Russell TP, Knoll W (2006) J Phys Chem B 110:15381–15388

    Google Scholar 

  52. Casero E, Vazquez L, Parra-Alfambra AM, Lorenzo E (2010) Analyst 135:1878–1903

    Google Scholar 

  53. Endo T, Kerman K, Nagatani N, Takamura Y, Tamiya E (2005) Anal Chem 77:6976–6984

    Google Scholar 

  54. Janshoff A, Galla HJ, Steinem C (2000) Angew Chem Int Ed 39:4004–4032

    Google Scholar 

  55. McPhillips J, Murphy A, Jonsson MP, Hendren WR, Atkinson R, Hook F, Zayats AV, Pollard RJ (2010) ACS Nano 4:2210–2216

    Google Scholar 

  56. Shi HQ, Tsai WB, Garrison MD, Ferrari S, Ratner BD (1999) Nature 398:593–597

    Google Scholar 

  57. Schuck P (1997) Ann Rev Biophys Biomol Struct 26:541–566

    Google Scholar 

  58. Schuck P, Minton AP (1996) Anal Biochem 240:262–272

    Google Scholar 

  59. Rabe M, Verdes D, Seeger S (2011) Adv Colloid Interface Sci 162:87–106

    Google Scholar 

  60. Schuck P (1997) Curr Opin Biotechnol 8:498–502

    Google Scholar 

  61. Carrasquilla C, Li Y, Brennan JD (2011) Anal Chem 83:957–965

    Google Scholar 

  62. DeLouise LA, Miller BL (2004) Anal Chem 76:6915–6920

    Google Scholar 

  63. Feng L, Musto CJ, Kemling JW, Lim SH, Zhong W, Suslick KS (2010) Anal Chem 82:9433–9440

    Google Scholar 

  64. Qiao YH, Wang D, Buriak JM (2007) Nano Lett 7:464–469

    Google Scholar 

  65. Gopinath SCB, Awazu K, Fujimaki M, Sugimoto K, Ohki Y, Komatsubara T, Tominaga J, Gupta KC, Kumar PKR (2008) Anal Chem 80:6602–6609

    Google Scholar 

  66. Lawrie JL, Jiao Y, Weiss SM (2010) IEEE Trans 9:596–602

    Google Scholar 

  67. Dancil KPS, Greiner DP, Sailor MJ (1999) J Am Chem Soc 121:7925–7930

    Google Scholar 

  68. Mun KS, Alvarez SD, Choi WY, Sailor MJ (2010) ACS Nano 4:2070–2076

    Google Scholar 

  69. Trivinho-Strixino F, Guerreiro HA, Gomes CS, Pereira EC, Guimaraes FEG (2010) Appl Phys Lett 97

    Google Scholar 

  70. Walt DR (2009) ACS Nano 3:2876–2880

    Google Scholar 

  71. Li FY, Zhang L, Metzger RM (1998) Chem Mater 10:2470–2480

    Google Scholar 

  72. Lazzara TD, Lau KHA, Abou-Kandil AI, Caminade AM, Majoral JP, Knoll W (2010) ACS Nano 4:3909–3920

    Google Scholar 

  73. Bird RB, Stewart WE, Lightfoot EN (2001) Transport Phenomena, 2nd edn. Wiley, New York

    Google Scholar 

  74. Deen WM, Bohrer MP, Epstein NB (1981) AlChE J 27:952–959

    Google Scholar 

  75. Huang CJ, Dostalek J, Knoll W (2010) Biosens Bioelectron 26:1425–1431

    Google Scholar 

  76. Probstein RF (2003) Physicochemical hydrodynamics: an introduction. Wiley, Hoboken

    Google Scholar 

  77. Wolny PM, Spatz JP, Richter RP (2009) Langmuir 26:1029–1034

    Google Scholar 

  78. Bain CD, Biebuyck HA, Whitesides GM (1989) Langmuir 5:723–727

    Google Scholar 

  79. Bain CD, Troughton EB, Tao YT, Evall J, Whitesides GM, Nuzzo RG (1989) J Am Chem Soc 111:321–335

    Google Scholar 

  80. Dubois LH, Nuzzo RG (1992) Ann Rev Phys Chem 43:437–463

    Google Scholar 

  81. Dubois LH, Zegarski BR, Nuzzo RG (1993) J Chem Phys 98:678–688

    Google Scholar 

  82. Laibinis PE, Whitesides GM, Allara DL, Tao YT, Parikh AN, Nuzzo RG (1991) J Am Chem Soc 113:7152–7167

    Google Scholar 

  83. Schreiber F (2000) Prog Surf Sc 65:151–256

    Google Scholar 

  84. Sellers H, Ulman A, Shnidman Y, Eilers JE (1993) J Am Chem Soc 115:9389–9401

    Google Scholar 

  85. Gombotz WR, Guanghui W, Horbett TA, Hoffman AS (1991) J Biomed Mater Res 25:1547–1562

    Google Scholar 

  86. Liston EM, Martinu L, Wertheimer MR (1993) J Adhes Sci Technol 7:1091–1127

    Google Scholar 

  87. Tran Y, Auroy P (2001) J Am Chem Soc 123:3644–3654

    Google Scholar 

  88. Brzoska JB, Benazouz I, Rondelez F (1994) Langmuir 10:4367–4373

    Google Scholar 

  89. Brzoska JB, Shahidzadeh N, Rondelez F (1992) Nature 360:719–721

    Google Scholar 

  90. Fadeev AY, McCarthy TJ (2000) Langmuir 16:7268–7274

    Google Scholar 

  91. Nanci A, Wuest JD, Peru L, Brunet P, Sharma V, Zalzal S, McKee MD (1998) J Biomed Mater Res 40:324–335

    Google Scholar 

  92. Oner D, McCarthy TJ (2000) Langmuir 16:7777–7782

    Google Scholar 

  93. Ozin GA (1992) Adv Mater 4:612–649

    Google Scholar 

  94. Weetall HH (1993) Appl Biochem Biotechnol 41:157–188

    Google Scholar 

  95. Fadeev AY, McCarthy TJ (1999) Langmuir 15:3759–3766

    Google Scholar 

  96. Kobayash H, Bell AT, Shen M (1974) Macromolecules 7:277–283

    Google Scholar 

  97. Medard N, Soutif JC, Poncin-Epaillard F (2002) Surf Coat Technol 160:197–205

    Google Scholar 

  98. Biebuyck HA, Whitesides GM (1993) Langmuir 9:1766–1770

    Google Scholar 

  99. Hubbard JB, Silin V, Plant AL (1998) Biophys Chem 75:163–176

    Google Scholar 

  100. Plant AL (1993) Langmuir 9:2764–2767

    Google Scholar 

  101. Ron H, Matlis S, Rubinstein I (1998) Langmuir 14:1116–1121

    Google Scholar 

  102. Kelley TW, Boardman LD, Dunbar TD, Muyres DV, Pellerite MJ, Smith TYP (2003) J Phys Chem B 107:5877–5881

    Google Scholar 

  103. Templeton MK, Weinberg WH (1985) J Am Chem Soc 107:97–108

    Google Scholar 

  104. Templeton MK, Weinberg WH (1985) J Am Chem Soc 107:774–779

    Google Scholar 

  105. Mutalib Md Jani A, Anglin EJ, McInnes SJP, Losic D, Shapter JG, Voelcker NH (2009) Chem Commun 3062–3064

    Google Scholar 

  106. Gorton L (2005) Biosensors and modern biospecific analytical techniques, 1st edn. Elsevier, Amsterdam

    Google Scholar 

  107. Soriaga MP, Stickney J, Bottomley LA, Kim Y-G (2002) Thin films: preparation, characterization applications, 1st edn. Springer, New York

    Google Scholar 

  108. Wilbur JL, Whitesides GM (1999) Chapter 8: Self-assembly and self-assembled monolayers in micro- and nanofabrication. In: Timp GL (ed) Nanotechnology. Springer, New York, pp 331–353

    Google Scholar 

  109. Mey I, Stephan M, Schmitt EK, Müller MM, Ben Amar M, Steinem C, Janshoff A (2009) J Am Chem Soc 131:7031–7039

    Google Scholar 

  110. Hobler C, Bakowsky U, Keusgen M (2010) Phys Status Solidi A 207:872–877

    Google Scholar 

  111. Popat KC, Mor G, Grimes CA, Desai TA (2004) Langmuir 20:8035–8041

    Google Scholar 

  112. Velleman L, Triani G, Evans PJ, Shapter JG, Losic D (2009) Microporous Mesoporous Mater 126:87–94

    Google Scholar 

  113. Sailor MJ, Link JR (2005) Chem Commun 1375–1383

    Google Scholar 

  114. Kilian KA, Bocking T, Gaus K, Gooding JJ (2008) Angew Chem Int Ed 47:2697–2699

    Google Scholar 

  115. Brevnov DA, Barela MJ, Brooks MJ, Lopez GP, Atanassov PB (2004) J Electrochem Soc 151:B484–B489

    Google Scholar 

  116. Lazzara TD, Kliesch TT, Janshoff A, Steinem C (2011) ACS Appl Mater Interfaces 3:1068–1076

    Google Scholar 

  117. Fliniaux O, Elie-Caille C, Pantigny J, Bourdillon C (2005) Electrochem Commun 7:697–702

    Google Scholar 

  118. Tamm LK, McConnell HM (1985) Biophys J 47:105–113

    Google Scholar 

  119. Plant AL (1999) Langmuir 15:5128–5135

    Google Scholar 

  120. Brian AA, McConnell HM (1984) PNAS 81:6159–6163

    Google Scholar 

  121. Lazzara T, Behn D, Kliesch T-T, Janshoff A, Steinem C (2012) J Coll Int Sci 366:57–63

    Google Scholar 

  122. Spinke J, Liley M, Schmitt FJ, Guder HJ, Angermaier L, Knoll W (1993) J Chem Phys 99:7012–7019

    Google Scholar 

  123. Perez-Luna VH, O’Brien MJ, Opperman KA, Hampton PD, Lopez GP, Klumb LA, Stayton PS (1999) J Am Chem Soc 121:6469–6478

    Google Scholar 

  124. Hidaka S, Konecke V, Osten L, Witzgall R (2004) J Biol Chem 279:35009–35016

    Google Scholar 

  125. Carnarius C, Kreir M, Krick M, Methfessel C, Moehrle V, Valerius O, Brüggemann A, Steinem C, Fertig N (2012) J Biol Chem 287:2877–2886

    Google Scholar 

  126. Drexler J, Steinem C (2003) J Phys Chem B 107:11245–11254

    Google Scholar 

  127. Hennesthal C, Drexler J, Steinem C (2002) Chem Phys Chem 3:885–889

    Google Scholar 

  128. Hennesthal C, Steinem C (2000) J Am Chem Soc 122:8085–8086

    Google Scholar 

  129. Janshoff A, Steinem C (2012) Supported lipid bilayers: intelligent surfaces for ion channel recordings. In: Textor M (ed) Intelligent surfaces: polymer coatings for applications in bio‐related and life sciences. Wiley, pp 141–182

    Google Scholar 

  130. Kocun M, Lazzara TD, Steinem C, Janshoff A (2011) Langmuir 27:7672–7680

    Google Scholar 

  131. Lazzara TD, Carnarius C, Kocun M, Janshoff A, Steinem C (2011) ACS Nano 5:6935–6944

    Google Scholar 

  132. Mey I, Steinem C, Janshoff A (2012) J Mater Chem 22:19348–19356

    Google Scholar 

  133. Römer W, Steinem C (2004) Biophys J 86:955–965

    Google Scholar 

  134. Schmitt EK, Nurnabi M, Bushby RJ, Steinem C (2008) Soft Matter 4:250–253

    Google Scholar 

  135. Steltenkamp S, Müller MM, Deserno M, Hennesthal C, Steinem C, Janshoff A (2006) Biophys J 91:217–226

    Google Scholar 

  136. Jonsson P, Jonsson MP, Hook F (2010) Nano Lett 10:1900–1906

    Google Scholar 

  137. Bhattacharya J, Kisner A, Offenhäusser A, Wolfrum B (2011) Beilstein J Nanotechnol 2:104–109

    Google Scholar 

  138. Suzuki K, Masuhara H (2005) Langmuir 21:6487–6494

    Google Scholar 

  139. Pfeiffer I, Seantier B, Petronis S, Sutherland D, Kasemo B, Zach M (2008) J Phys Chem B 112:5175–5181

    Google Scholar 

  140. Pfeiffer I, Petronis S, Koper I, Kasemo B, Zach M (2010) J Phys Chem B 114:4623–4631

    Google Scholar 

  141. Liebermann T, Knoll W (2000) Colloids Surf A-Physicochem Eng Asp 171:115–130

    Google Scholar 

  142. Vasilev K, Knoll W, Kreiter M (2004) J Chem Phys 120:3439–3445

    Google Scholar 

  143. Im H, Wittenberg NJ, Lesuffleur A, Lindquist NC, Oh SH (2010) Chem Sci 1:688–696

    Google Scholar 

  144. Worsfold O, Voelcker NH, Nishiya T (2006) Langmuir 22:7078–7083

    Google Scholar 

  145. Cunin F, Milhiet PE, Anglin E, Sailor MJ, Espenel C, Le Grimellec C, Brunel D, Devoisselle JM (2007) Ultramicroscopy 107:1048–1052

    Google Scholar 

  146. Aronsson BO, Lausmaa J, Kasemo B (1997) J Biomed Mater Res 35:49–73

    Google Scholar 

  147. Raiber K, Terfort A, Benndorf C, Krings N, Strehblow HH (2005) Surf Sci 595:56–63

    Google Scholar 

  148. Castellana ET, Cremer PS (2006) Surf Sci Rep 61:429–444

    Google Scholar 

  149. Stelzle M, Miehlich R, Sackmann E (1992) Biophys J 63:1346–1354

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas D. Lazzara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lazzara, T.D., Janshoff, A., Steinem, C. (2014). Biofunctionalization of Nanoporous Alumina Substrates. In: Bhushan, B., Luo, D., Schricker, S., Sigmund, W., Zauscher, S. (eds) Handbook of Nanomaterials Properties. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31107-9_11

Download citation

Publish with us

Policies and ethics