Bounding Interference in Wireless Ad Hoc Networks with Nodes in Random Position

  • Majid Khabbazian
  • Stephane Durocher
  • Alireza Haghnegahdar
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7355)


Given a set of positions for wireless nodes, the interference minimization problem is to assign a transmission radius (equivalently, a power level) to each node such that the resulting communication graph is connected, while minimizing the maximum interference. We consider the model introduced by von Rickenbach et al. (2005), in which each transmission range is represented by a ball and edges in the communication graph are symmetric. The problem is NP-complete in two dimensions (Buchin 2008) and no polynomial-time approximation algorithm is known. In this paper we show how to solve the problem efficiently in settings typical for wireless ad hoc networks. We show that if node positions are represented by a set P of n points selected uniformly and independently at random over a d-dimensional rectangular region, for any fixed d, then the topology given by the closure of the Euclidean minimum spanning tree of P has maximum interference O(logn) with high probability. We extend this bound to a general class of communication graphs over a broad set of probability distributions. We present a local algorithm that constructs a graph from this class; this is the first local algorithm to provide an upper bound on the expected maximum interference. Finally, we analyze an empirical evaluation of our algorithm by simulation.


Local Algorithm Topology Control Wireless Node Simulation Region Communication Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Benkert, M., Gudmundsson, J., Haverkort, H., Wolff, A.: Constructing minimum-interference networks. Comp. Geom.: Theory & App. 40(3), 179–194 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Bilò, D., Proietti, G.: On the complexity of minimizing interference in ad-hoc and sensor networks. Theor. Comp. Sci. 402(1), 42–55 (2008)CrossRefGoogle Scholar
  3. 3.
    Bose, P., Gudmundsson, J., Smid, M.: Constructing plane spanners of bounded degree and low weight. Algorithmica 42(3-4), 249–264 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Bose, P., Morin, P., Stojmenović, I., Urrutia, J.: Routing with guaranteed delivery in ad hoc wireless networks. Wireless Net. 7(6), 609–616 (2001)zbMATHCrossRefGoogle Scholar
  5. 5.
    Buchin, K.: Minimizing the maximum interference is hard. CoRR, abs/0802.2134 (2008)Google Scholar
  6. 6.
    Burkhart, M., von Rickenbach, P., Wattenhofer, R., Zollinger, A.: Does topology control reduce interference. In: Proc. ACM MobiHoc, pp. 9–19 (2004)Google Scholar
  7. 7.
    Damian, M., Pandit, S., Pemmaraju, S.V.: Local approximation schemes for topology control. In: Proc. ACM PODC, pp. 208–218 (2006)Google Scholar
  8. 8.
    Das Sarma, A., Nanongkai, D., Pandurangan, G.: Fast distributed random walks. In: Proc. ACM PODC, pp. 161–170 (2009)Google Scholar
  9. 9.
    Devroye, L., Morin, P.: A note on interference in random point sets. CoRR, 1202.5945 (2012)Google Scholar
  10. 10.
    Durocher, S., Kranakis, E., Krizanc, D., Narayanan, L.: Balancing traffic load using one-turn rectilinear routing. J. Interconn. Net. 10(1-2), 93–120 (2009)CrossRefGoogle Scholar
  11. 11.
    Halldórsson, M.M., Tokuyama, T.: Minimizing interference of a wireless ad-hoc network in a plane. Theor. Comp. Sci. 402(1), 29–42 (2008)zbMATHCrossRefGoogle Scholar
  12. 12.
    Hyytiä, E., Lassila, P., Virtamo, J.: Spatial node distribution of the random waypoint mobility model with applications. IEEE Trans. Mob. Comp. 6(5), 680–694 (2006)CrossRefGoogle Scholar
  13. 13.
    Johnson, D.B., Maltz, D.A.: Dynamic source routing in ad hoc wireless networks. In: Imielinski, T., Korth, H. (eds.) Mobile Computing, vol. 353, Kluwer Academic Publishers (1996)Google Scholar
  14. 14.
    Kanj, I., Perković, L., Xia, G.: Computing Lightweight Spanners Locally. In: Taubenfeld, G. (ed.) DISC 2008. LNCS, vol. 5218, pp. 365–378. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  15. 15.
    Khabbazian, M., Durocher, S., Haghnegahdar, A.: Bounding interference in wireless ad hoc networks with nodes in random position. CoRR, 1111.6689 (2011)Google Scholar
  16. 16.
    Khan, M., Pandurangan, G., Anil Kumar, V.S.: Distributed algorithms for constructing approximate minimum spanning trees in wireless sensor networks. IEEE Trans. Parallel & Dist. Sys. 20(1), 124–139 (2009)CrossRefGoogle Scholar
  17. 17.
    Korman, M.: Minimizing Interference in Ad-Hoc Networks with Bounded Communication Radius. In: Asano, T., Nakano, S.-i., Okamoto, Y., Watanabe, O. (eds.) ISAAC 2011. LNCS, vol. 7074, pp. 80–89. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  18. 18.
    Kowalski, D.R., Rokicki, M.A.: Connectivity Problem in Wireless Networks. In: Lynch, N.A., Shvartsman, A.A. (eds.) DISC 2010. LNCS, vol. 6343, pp. 344–358. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  19. 19.
    Kranakis, E., Krizanc, D., Morin, P., Narayanan, L., Stacho, L.: A tight bound on the maximum interference of random sensors in the highway model. CoRR, abs/1007.2120 (2010)Google Scholar
  20. 20.
    Li, L., Halpern, J.Y., Bahl, P., Wang, Y.-M., Wattenhofer, R.: A cone-based distributed topology-control algorithm for wireless multi-hop networks. IEEE/ACM Trans. Net. 13(1), 147–159 (2005)CrossRefGoogle Scholar
  21. 21.
    Li, X.-Y., Calinescu, G., Wan, P.-J.: Distributed construction of a planar spanner and routing for ad hoc wireless networks. In: Proc. IEEE INFOCOM, pp. 1268–1277 (2002)Google Scholar
  22. 22.
    Locher, T., von Rickenbach, P., Wattenhofer, R.: Sensor Networks Continue to Puzzle: Selected Open Problems. In: Rao, S., Chatterjee, M., Jayanti, P., Murthy, C.S.R., Saha, S.K. (eds.) ICDCN 2008. LNCS, vol. 4904, pp. 25–38. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  23. 23.
    Maheshwari, A., Smid, M., Zeh, N.: Low-interference networks in metric spaces with bounded doubling dimension. Information Processing Letters 111(23-24), 1120–1123 (2011)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Moscibroda, T., Wattenhofer, R.: Minimizing interference in ad hoc and sensor networks. In: Proc. ACM DIALM-POMC, pp. 24–33 (2005)Google Scholar
  25. 25.
    Narasimhan, G., Smid, M.: Geometric Spanner Networks. Cambridge University Press (2007)Google Scholar
  26. 26.
    Piorkowski, M., Sarafijanovic-Djukic, N., Grossglauser, M.: CRAWDAD data set epfl/mobility (v. February 24, 2009),
  27. 27.
    Santi, P.: Topology control in wireless ad hoc and sensor networks. ACM Comp. Surv. 37(2), 164–194 (2005)CrossRefGoogle Scholar
  28. 28.
    Sharma, A.K., Thakral, N., Udgata, S.K., Pujari, A.K.: Heuristics for Minimizing Interference in Sensor Networks. In: Garg, V., Wattenhofer, R., Kothapalli, K. (eds.) ICDCN 2009. LNCS, vol. 5408, pp. 49–54. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  29. 29.
    Tan, H., Lou, T., Lau, F.C.M., Wang, Y., Chen, S.: Minimizing Interference for the Highway Model in Wireless Ad-Hoc and Sensor Networks. In: Černá, I., Gyimóthy, T., Hromkovič, J., Jefferey, K., Králović, R., Vukolić, M., Wolf, S. (eds.) SOFSEM 2011. LNCS, vol. 6543, pp. 520–532. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  30. 30.
    von Rickenbach, P., Schmid, S., Wattenhofer, R., Zollinger, A.: A robust interference model for wireless ad hoc networks. In: Proc. IEEE IPDPS, pp. 1–8 (2005)Google Scholar
  31. 31.
    von Rickenbach, P., Wattenhofer, R., Zollinger, A.: Algorithmic models of interference in wireless ad hoc and sensor networks. IEEE/ACM Trans. Net. 17(1), 172–185 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Majid Khabbazian
    • 1
  • Stephane Durocher
    • 2
  • Alireza Haghnegahdar
    • 3
  1. 1.University of WinnipegWinnipegCanada
  2. 2.University of ManitobaWinnipegCanada
  3. 3.University of British ColumbiaVancouverCanada

Personalised recommendations