Advertisement

On Snapshots and Stable Properties Detection in Anonymous Fully Distributed Systems (Extended Abstract)

  • Jérémie Chalopin
  • Yves Métivier
  • Thomas Morsellino
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7355)

Abstract

Most known snapshot algorithms assume that the vertices of the network have unique identifiers and/or that there is exactly one initiator. This paper concerns snapshot computation in an anonymous network and more generally what stable properties of a distributed system can be computed anonymously with local snapshots with multiple initiators when knowing an upper bound on the diameter of the network.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Ang80]
    Angluin, D.: Local and global properties in networks of processors. In: Proceedings of the 12th Symposium on Theory of Computing, pp. 82–93 (1980)Google Scholar
  2. [AW04]
    Attiya, H., Welch, J.: Distributed computing: fundamentals, simulations, and advanced topics. John Wiley & Sons (2004)Google Scholar
  3. [BCG+96]
    Boldi, P., Codenotti, B., Gemmell, P., Shammah, S., Simon, J., Vigna, S.: Symmetry breaking in anonymous networks: Characterizations. In: Proc. 4th Israeli Symposium on Theory of Computing and Systems, pp. 16–26. IEEE Press (1996)Google Scholar
  4. [BV99]
    Boldi, P., Vigna, S.: Computing anonymously with arbitrary knowledge. In: Proceedings of the 18th ACM Symposium on Principles of Distributed Computing, pp. 181–188. ACM Press (1999)Google Scholar
  5. [BV02]
    Boldi, P., Vigna, S.: Fibrations of graphs. Discrete Math. 243, 21–66 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  6. [Cha06]
    Chalopin, J.: Algorithmique distribuée, calculs locaux et homorphismes de graphes. PhD thesis, université Bordeaux 1 (2006)Google Scholar
  7. [CL85]
    Chandy, K.M., Lamport, L.: Distributed snapshots: Determining global states of distributed systems. ACM Trans. Comput. Syst. 3(1), 63–75 (1985)CrossRefGoogle Scholar
  8. [CM07]
    Chalopin, J., Métivier, Y.: An efficient message passing election algorithm based on mazurkiewicz’s algorithm. Fundam. Inform. 80(1-3), 221–246 (2007)zbMATHGoogle Scholar
  9. [GR05]
    Guerraoui, R., Ruppert, E.: What Can Be Implemented Anonymously? In: Fraigniaud, P. (ed.) DISC 2005. LNCS, vol. 3724, pp. 244–259. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. [GT87]
    Gross, J.L., Tucker, T.W.: Topological graph theory. Wiley Interscience (1987)Google Scholar
  11. [JS85]
    Johnson, R.E., Schneider, F.B.: Symmetry and similarities in distributed systems. In: Proc. 4th Conf. on Principles of Distributed Computing, pp. 13–22 (1985)Google Scholar
  12. [KRS95]
    Kshemkalyani, A.D., Raynal, M., Singhal, M.: An introduction to snapshot algorithms in distributed computing. Distributed Systems Engineering 2(4), 224–233 (1995)CrossRefGoogle Scholar
  13. [KS08]
    Kshemkalyani, A.D., Singhal, M.: Distributed computing, Cambridge (2008)Google Scholar
  14. [Maz97]
    Mazurkiewicz, A.: Distributed enumeration. Inf. Processing Letters 61, 233–239 (1997)MathSciNetCrossRefGoogle Scholar
  15. [MC98]
    Matocha, J., Camp, T.: A taxonomy of distributed termination detection algorithms. Journal of Systems and Software 43(3), 207–221 (1998)CrossRefGoogle Scholar
  16. [Ray88]
    Raynal, M.: Networks and distributed computation. MIT Press (1988)Google Scholar
  17. [San07]
    Santoro, N.: Design and analysis of distributed algorithm. Wiley (2007)Google Scholar
  18. [SS94]
    Schiper, A., Sandoz, A.: Strong stable properties in distributed systems. Distributed Computing 8(2), 93–103 (1994)CrossRefGoogle Scholar
  19. [SSP85]
    Szymanski, B., Shy, Y., Prywes, N.: Synchronized distributed termination. IEEE Transactions on Software Engineering SE-11(10), 1136–1140 (1985)CrossRefGoogle Scholar
  20. [Tel00]
    Tel, G.: Introduction to distributed algorithms. Cambridge University Press (2000)Google Scholar
  21. [YK96a]
    Yamashita, M., Kameda, T.: Computing functions on asynchronous anonymous networks. Math. Systems Theory 29, 331–356 (1996)MathSciNetzbMATHGoogle Scholar
  22. [YK96b]
    Yamashita, M., Kameda, T.: Computing on anonymous networks: Part i - characterizing the solvable cases. IEEE Transactions on Parallel and Distributed Systems 7(1), 69–89 (1996)CrossRefGoogle Scholar
  23. [YK99]
    Yamashita, M., Kameda, T.: Leader election problem on networks in which processor identity numbers are not distinct. IEEE Transactions on Parallel and Distributed Systems 10(9), 878–887 (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Jérémie Chalopin
    • 1
  • Yves Métivier
    • 2
  • Thomas Morsellino
    • 2
  1. 1.LIFCNRS & Aix-Marseille UniversitéMarseille Cedex 13France
  2. 2.LaBRI, UMR CNRS 5800Université de BordeauxTalenceFrance

Personalised recommendations