Advertisement

Homonyms with Forgeable Identifiers

  • Carole Delporte-Gallet
  • Hugues Fauconnier
  • Hung Tran-The
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7355)

Abstract

We consider here the Byzantine Agreement problem (BA) in synchronous systems with homonyms in the case where some identifiers may be forgeable. More precisely, the n processes share a set of l (1 ≤ l ≤ n) identifiers. Assuming that at most t processes may be Byzantine and at most k (t ≤ k ≤ l) of these identifiers are forgeable in the sense that any Byzantine process can falsely use them, we prove that Byzantine Agreement problem is solvable if and only if l > 2t + k.

Moreover we extend this result to systems with authentication by signatures in which at most k signatures are forgeable and we prove that Byzantine Agreement problem is solvable if and only if l > t + k.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Attiya, H., Gorbach, A., Moran, S.: Computing in totally anonymous asynchronous shared memory systems. Information and Computation 173(2), 162–183 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Bansal, P., Gopal, P., Gupta, A., Srinathan, K., Vasishta, P.K.: Byzantine Agreement Using Partial Authentication. In: Peleg, D. (ed.) DISC 2011. LNCS, vol. 6950, pp. 389–403. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  3. 3.
    Boldi, P., Vigna, S.: An Effective Characterization of Computability in Anonymous Networks. In: Welch, J.L. (ed.) DISC 2001. LNCS, vol. 2180, pp. 33–47. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  4. 4.
    Buhrman, H., Panconesi, A., Silvestri, R., Vitányi, P.M.B.: On the importance of having an identity or, is consensus really universal? Distributed Computing 18(3), 167–176 (2006)CrossRefGoogle Scholar
  5. 5.
    Chaum, D., van Heyst, E.: Group Signatures. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991)Google Scholar
  6. 6.
    Delporte-Gallet, C., Fauconnier, H., Guerraoui, R., Kermarrec, A.-M., Ruppert, E., Tran-The, H.: Byzantine agreement with homonyms. In: PODC, pp. 21–30. ACM (2011)Google Scholar
  7. 7.
    Delporte-Gallet, C., Fauconnier, H., Tran-The, H.: Byzantine Agreement with Homonyms in Synchronous Systems. In: Bononi, L., Datta, A.K., Devismes, S., Misra, A. (eds.) ICDCN 2012. LNCS, vol. 7129, pp. 76–90. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  8. 8.
    Delporte-Gallet, C., Fauconnier, H., Tran-The, H.: Homonyms with forgeable identifiers. Technical Report hal-00687836, HAL-CNRS (April 2012)Google Scholar
  9. 9.
    Fischer, M.J., Lynch, N.A., Merritt, M.: Easy impossibility proofs for distributed consensus problems. Distributed Computing 1(1), 26–39 (1986)zbMATHCrossRefGoogle Scholar
  10. 10.
    El Gamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Transactions on Information Theory 31(4), 469–472 (1985)zbMATHCrossRefGoogle Scholar
  11. 11.
    Gordon, S.D., Katz, J., Kumaresan, R., Yerukhimovich, A.: Authenticated Broadcast with a Partially Compromised Public-Key Infrastructure. In: Dolev, S., Cobb, J., Fischer, M., Yung, M. (eds.) SSS 2010. LNCS, vol. 6366, pp. 144–158. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  12. 12.
    Guerraoui, R., Ruppert, E.: Anonymous and fault-tolerant shared-memory computing. Distributed Computing 20(3), 165–177 (2007)CrossRefGoogle Scholar
  13. 13.
    Gupta, A., Gopal, P., Bansal, P., Srinathan, K.: Authenticated Byzantine Generals in Dual Failure Model. In: Kant, K., Pemmaraju, S.V., Sivalingam, K.M., Wu, J. (eds.) ICDCN 2010. LNCS, vol. 5935, pp. 79–91. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  14. 14.
    Lamport, L., Shostak, R., Pease, M.: The Byzantine generals problem. ACM Transactions on Programming Languages and Systems 4(3), 382–401 (1982)zbMATHCrossRefGoogle Scholar
  15. 15.
    Pease, M., Shostak, R., Lamport, L.: Reaching agreement in the presence of faults. Journal of the ACM 27(2), 228–234 (1980)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Schneider, F.B.: Implementing fault-tolerant services using the state machine approach: A tutorial. ACM Computing Surveys 22(4), 299–319 (1990)CrossRefGoogle Scholar
  17. 17.
    Srikanth, T.K., Toueg, S.: Simulating authenticated broadcasts to derive simple fault-tolerant algorithms. Distributed Computing 2(2), 80–94 (1987)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Carole Delporte-Gallet
    • 1
  • Hugues Fauconnier
    • 1
  • Hung Tran-The
    • 1
  1. 1.LIAFAUniversité Paris-DiderotFrance

Personalised recommendations