Mobile Network Creation Games

  • Michele Flammini
  • Vasco Gallotti
  • Giovanna Melideo
  • Gianpiero Monaco
  • Luca Moscardelli
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7355)


We introduce a new class of network creation games, called mobile network creation games, modelling the spontaneous creation of communication networks by the distributed and uncoordinated interaction of k selfish mobile devices. Each device is owned by a player able to select a node in an underlying positions graph so as to minimize a cost function taking into account two components: the distance from her home position, and the number of players she is not connected to, with the connectivity costs being prevailing, i.e., the Nash Equilibria are stable solution states in which communication is possible among all the players. We show that the game always admits a Pure Nash equilibrium, even if the convergence after a finite number of improving movements is guaranteed only when players perform their best possible moves. More precisely, if initial positions are arbitrary, that is not necessarily coinciding with the home ones, an order of kD best moves is necessary (and sufficient) to reach an equilibrium, where D is the diameter of the positions graph. As for the Nash equilibria performances, we first prove that the price of stability is 1 (i.e. an optimal solution is also a Nash equilibrium). Moreover, we show that the lack of centralized control of mobile devices is a major issue in terms of final performance guaranteed. Namely, the price of anarchy is Θ(kD). Nevertheless, we are able to prove that if players start at their home positions, in Θ(k min {k 2,D}) best moves they reach an equilibrium approximating the optimal solution by a factor of Θ(k min {k,D}).


Network Creation Games Price of Anarchy Price of Stability Speed of Convergence 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ackermann, H., Röglin, H., Vöcking, B.: On the impact of combinatorial structure on congestion games. J. ACM 55(6) (2008)Google Scholar
  2. 2.
    Alon, N., Demaine, E.D., Hajiaghayi, M.T., Leighton, T.: Basic network creation games. In: SPAA, pp. 106–113. ACM (2010)Google Scholar
  3. 3.
    Anshelevich, E., Dasgupta, A., Kleinberg, J.M., Tardos, É., Wexler, T., Roughgarden, T.: The price of stability for network design with fair cost allocation. In: FOCS, pp. 295–304. IEEE Computer Society (2004)Google Scholar
  4. 4.
    Biló, V., Flammini, M., Monaco, G., Moscardelli, L.: On the performances of nash equilibria in isolation games. J. Comb. Optim. 22(3), 378–391 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Demaine, E.D., Hajiaghayi, M.T., Mahini, H., Sayedi-Roshkhar, A.S., Oveisgharan, S., Zadimoghaddam, M.: Minimizing movement. ACM Transactions on Algorithms 5(3) (2009)Google Scholar
  6. 6.
    Demaine, E.D., Hajiaghayi, M.T., Mahini, H., Zadimoghaddam, M.: The price of anarchy in network creation games. In: PODC, pp. 292–298. ACM (2007)Google Scholar
  7. 7.
    Demaine, E.D., Hajiaghayi, M.T., Mahini, H., Zadimoghaddam, M.: The price of anarchy in cooperative network creation games. In: STACS, pp. 301–312 (2009)Google Scholar
  8. 8.
    Demaine, E.D., Hajiaghayi, M.T., Marx, D.: Minimizing Movement: Fixed-Parameter Tractability. In: Fiat, A., Sanders, P. (eds.) ESA 2009. LNCS, vol. 5757, pp. 718–729. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Dürr, C., Thang, N.K.: Nash Equilibria in Voronoi Games on Graphs. In: Arge, L., Hoffmann, M., Welzl, E. (eds.) ESA 2007. LNCS, vol. 4698, pp. 17–28. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  10. 10.
    Fabrikant, A., Papadimitriou, C.H., Talwar, K.: The complexity of pure nash equilibria. In: STOC, pp. 604–612. ACM (2004)Google Scholar
  11. 11.
    Fabrikant, A., Luthra, A., Maneva, E., Papadimitriou, C.H., Shenker, S.: On a network creation game. In: PODC, pp. 347–351. ACM (2003)Google Scholar
  12. 12.
    Feldmann, R., Mavronicolas, M., Monien, B.: Nash Equilibria for Voronoi Games on Transitive Graphs. In: Leonardi, S. (ed.) WINE 2009. LNCS, vol. 5929, pp. 280–291. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  13. 13.
    Friggstad, Z., Salavatipour, M.R.: Minimizing movement in mobile facility location problems. In: FOCS, pp. 357–366. IEEE Computer Society (2008)Google Scholar
  14. 14.
    Jackson, M.O., Wolinsky, A.: A strategic model of social and economic networks. Journal of Economic Theory 71(1), 44–74 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Koutsoupias, E., Papadimitriou, C.H.: Worst-Case Equilibria. In: Meinel, C., Tison, S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 404–413. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  16. 16.
    Leonardi, S., Sankowski, P.: Network formation games with local coalitions. In: PODC, pp. 299–305. ACM (2007)Google Scholar
  17. 17.
    Nash, J.: Non-cooperative games. The Annals of Mathematics 54(2), 286–295 (1951)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Papadimitriou, C.H.: Algorithms, Games, and the Internet (Extended Abstract). In: Yu, Y., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 1–3. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  19. 19.
    Zhao, Y., Chen, W., Teng, S.-H.: The isolation game: A game of distances. Theor. Comput. Sci. 410(47-49), 4905–4919 (2009)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Michele Flammini
    • 1
  • Vasco Gallotti
    • 1
  • Giovanna Melideo
    • 1
  • Gianpiero Monaco
    • 1
  • Luca Moscardelli
    • 2
  1. 1.Department of Information Engineering, Computer Science and MathematicsUniversity of L’AquilaItaly
  2. 2.Department of Economic StudiesUniversity of Chieti-PescaraItaly

Personalised recommendations