Skip to main content

Wireless Network Stability in the SINR Model

  • Conference paper
Structural Information and Communication Complexity (SIROCCO 2012)

Abstract

We study the stability of wireless networks under stochastic arrival processes of packets, and design efficient, distributed algorithms that achieve stability in the SINR (Signal to Interference and Noise Ratio) interference model.

Specifically, we make the following contributions. We give a distributed algorithm that achieves \(\Omega(\frac{1}{\log^2 n})\)-efficiency on all networks (where n is the number of links in the network), for all length monotone, sub-linear power assignments. For the power control version of the problem, we give a distributed algorithm with \(\Omega(\frac{1}{\log n(\log n + \log \log \Delta)})\)-efficiency (where Δ is the length diversity of the link set).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andrews, M., Dinitz, M.: Maximizing capacity in arbitrary wireless networks in the SINR model: Complexity and game theory. In: INFOCOM, pp. 1332–1340 (2009)

    Google Scholar 

  2. Ásgeirsson, E.I., Halldórsson, M.M., Mitra, P.: A Fully Distributed Algorithm for Throughput Performance in Wireless Networks. In: CISS (2012)

    Google Scholar 

  3. Asmussen, S.: Applied Probability and Queues, 2nd edn. Springer (2003)

    Google Scholar 

  4. Dimakis, A., Walrand, J.: Sufficient conditions for stability of longest-queue-first scheduling: second-order properties using fluid limits. Advances in Applied Probabability 38(2), 505–521 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dubhashi, D.P., Panconesi, A.: Concentration of Measure for the Analysis of Randomized Algorithms. Cambridge University Press (2009)

    Google Scholar 

  6. Goussevskaia, O., Halldórsson, M.M., Wattenhofer, R., Welzl, E.: Capacity of Arbitrary Wireless Networks. In: INFOCOM, pp. 1872–1880 (April 2009)

    Google Scholar 

  7. Halldórsson, M.M.: Wireless Scheduling with Power Control. In: Fiat, A., Sanders, P. (eds.) ESA 2009. LNCS, vol. 5757, pp. 361–372. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  8. Halldórsson, M.M., Mitra, P.: Nearly Optimal Bounds for Distributed Wireless Scheduling in the SINR Model. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part II. LNCS, vol. 6756, pp. 625–636. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  9. Halldórsson, M.M., Mitra, P.: Wireless Capacity with Oblivious Power in General Metrics. In: SODA (2011)

    Google Scholar 

  10. Halldorsson, M.M., Mitra, P.: Wireless capacity and admission control in cognitive radio. In: INFOCOM (2012)

    Google Scholar 

  11. Halldórsson, M.M., Wattenhofer, R.: Wireless Communication Is in APX. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009. LNCS, vol. 5555, pp. 525–536. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  12. Joo, C., Lin, X., Shroff, N.: Understanding the Capacity Region of the Greedy Maximal Scheduling Algorithm in Multi-Hop Wireless Networks. In: INFOCOM (2008)

    Google Scholar 

  13. Kesselheim, T.: Dynamic packet scheduling in wireless networks, http://arxiv.org/abs/1203.1226

  14. Kesselheim, T.: A Constant-Factor Approximation for Wireless Capacity Maximization with Power Control in the SINR Model. In: SODA (2011)

    Google Scholar 

  15. Kesselheim, T., Vöcking, B.: Distributed Contention Resolution in Wireless Networks. In: Lynch, N.A., Shvartsman, A.A. (eds.) DISC 2010. LNCS, vol. 6343, pp. 163–178. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  16. Le, L.B., Modiano, E., Joo, C., Shroff, N.B.: Longest-queue-first scheduling under SINR interference model. In: MobiHoc (2010)

    Google Scholar 

  17. Maheshwari, R., Jain, S., Das, S.R.: A measurement study of interference modeling and scheduling in low-power wireless networks. In: SenSys, pp. 141–154 (2008)

    Google Scholar 

  18. Modiano, E., Shah, D., Zussman, G.: Maximizing throughput in wireless networks via gossiping. In: SIGMETRICS/Performance, pp. 27–38 (2006)

    Google Scholar 

  19. Moscibroda, T., Wattenhofer, R., Weber, Y.: Protocol Design Beyond Graph-Based Models. In: Hotnets (November 2006)

    Google Scholar 

  20. Moscibroda, T., Wattenhofer, R., Zollinger, A.: Topology control meets SINR: The scheduling complexity of arbitrary topologies. In: MobiHoc, pp. 310–321 (2006)

    Google Scholar 

  21. Scheideler, C., Richa, A.W., Santi, P.: An O(logn) dominating set protocol for wireless ad-hoc networks under the physical interference model. In: MobiHoc, pp. 91–100 (2008)

    Google Scholar 

  22. Tassiulas, L., Ephremides, A.: Stability properties of constrained queueing systems and scheduling policies for maximum throughput in multihop radio networks. IEEE Trans. Automat. Contr. 37(12), 1936–1948 (1992)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ásgeirsson, E.I., Halldórsson, M.M., Mitra, P. (2012). Wireless Network Stability in the SINR Model. In: Even, G., Halldórsson, M.M. (eds) Structural Information and Communication Complexity. SIROCCO 2012. Lecture Notes in Computer Science, vol 7355. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31104-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31104-8_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31103-1

  • Online ISBN: 978-3-642-31104-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics