Advertisement

Poisson–Lie Groups

  • Camille Laurent-Gengoux
  • Anne Pichereau
  • Pol Vanhaecke
Part of the Grundlehren der mathematischen Wissenschaften book series (GL, volume 347)

Abstract

In this chapter we discuss Poisson–Lie groups and their infinitesimal counterparts Lie bialgebras. A Poisson–Lie group is a Lie group G which is equipped with a Poisson structure π, having the property that the product map on G is a morphism of Poisson manifolds. A Lie bialgebra is a Lie algebra which is at the same time a Lie coalgebra, the algebra and coalgebra structures satisfying some compatibility relation. We show that there is a functor which associates to every Poisson–Lie group a Lie bialgebra and that every finite-dimensional Lie bialgebra is the Lie bialgebra of some Poisson–Lie group, which can be chosen to be connected and simply connected. Using dressing actions, we shortly discuss the symplectic leaves of Poisson–Lie groups.

Keywords

Poisson Structure Linear Poisson Structure Unique Poisson Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Camille Laurent-Gengoux
    • 1
  • Anne Pichereau
    • 2
  • Pol Vanhaecke
    • 3
  1. 1.CNRS UMR 7122, Laboratoire de MathématiquesUniversité de LorraineMetzFrance
  2. 2.CNRS UMR 5208, Institut Camille JordanUniversité Jean MonnetSaint-EtienneFrance
  3. 3.CNRS UMR 7348, Lab. Mathématiques et ApplicationsUniversité de PoitiersFuturoscope ChasseneuilFrance

Personalised recommendations