Skip to main content

Noninnocent Behavior of PCP and PCN Pincer Ligands of Late Metal Complexes

  • Chapter
  • First Online:
Book cover Organometallic Pincer Chemistry

Part of the book series: Topics in Organometallic Chemistry ((TOPORGAN,volume 40))

Abstract

Pincer complexes are generally viewed as stable compounds in which the pincer ligand framework remains unchanged during stoichiometric and catalytic reactions. However, there are now several cases in which the pincer ligand itself undergoes transformations that result in extraordinary reactivity of the metal complex and formation of unusual species. In the current chapter, we review our work on “noninnocent” reactivity modes of various PCP and PCN-type pincer ligands of Rh, Ir, Ru, Os, Pd, and Pt. Participation of the arene ring in the reactivity of PCP type complexes has led to formation of unprecedented quinonoid complexes, including complexes in which the pincer ligand adopts structures of quinone methides, thio-quinone methides, xylylenes, methylene arenium, and oxo-arenium compounds. In addition, pincer systems can collapse and be regenerated under redox conditions, and reduction can lead to a ring-localized radical anion complex. The generation of C–H agostic arene PCP complexes has led to new insights regarding the C–H bond activation process, and the effect of CO ligands on it.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We are aware of two examples of completely nonplanar (rather than distorted square planar) Pd(II)L4 complexes, only one of them being diamagnetic [112, 113].

  2. 2.

    A mechanism involving organic halide oxidative addition to generate dibenzyl or biphenyl is also possible. See, for example [114].

  3. 3.

    In analogy to nonchelating systems, where reduction of PtCl2L2 (L = bulky tert-phosphines) with Na/Hg in THF affords PtL2 complexes, while reduction of PdCl2L2 (L = bulky tert-phosphines) with Na/Hg in THF resulted in formation of metallic palladium. The reduction was achieved only when excess phosphine was used. See [116] and references therein.

  4. 4.

    For nonisolated, anionic palladium(0) intermediates, and their involvement in oxidative addition reactions, see [119, 120].

  5. 5.

    Very unstable, not isolated [144].

References

  1. Milstein D (2003) Pure Appl Chem 75:445

    Article  CAS  Google Scholar 

  2. van der Boom ME, Milstein D (2003) Chem Rev 103:1759

    Article  CAS  Google Scholar 

  3. Albrecht M, van Koten G (2001) Angew Chem Int Ed 40:3750

    Article  CAS  Google Scholar 

  4. Singleton JT (2003) Tetrahedron 59:1837

    Article  CAS  Google Scholar 

  5. Rybtchinski B, Milstein D (1999) Angew Chem Int Ed 28:870

    Article  Google Scholar 

  6. Hartley FR, Patai S (eds) (1982) The chemistry of the metal-carbon bond: the structure, preparation, thermochemistry and characterization of organometallic compounds, vol 1. Wiley, New York

    Google Scholar 

  7. Dyke AM, Hester AJ, Lloyd-Jones GC (2006) Synthesis 24:4093

    Google Scholar 

  8. Moulton CJ, Shaw BLJ (1976) J Chem Soc Dalton Trans 1020–1024

    Google Scholar 

  9. Gozin M, Weisman A, Ben-David Y, Milstein D (1993) Nature 364:699

    Article  CAS  Google Scholar 

  10. Liou S-Y, Gozin M, Milstein D (1995) J Am Chem Soc 117:9774

    Article  CAS  Google Scholar 

  11. van der Boom ME, Kraatz H-B, Ben-David Y, Milstein D (1996) J Chem Soc Chem Commun 2167–2168

    Google Scholar 

  12. Crocker C, Empsall D, Errington RJ, Hyde EM, Mc-Donald WS, Markham R, Norton MC, Shaw BL (1982) J Chem Soc Dalton Trans 1829–1834

    Google Scholar 

  13. Vigalok A, Milstein D (2001) Acc Chem Res 34:798

    Article  CAS  Google Scholar 

  14. Jensen CM (1999) Chem Commun 2443–2449

    Google Scholar 

  15. Renkema KB, Kissin YV, Goldman AS (2003) J Am Chem Soc 125:7770

    Article  CAS  Google Scholar 

  16. Gottker-Schnetmann I, White PS, Brookhart M (2004) J Am Chem Soc 126:1804

    Article  CAS  Google Scholar 

  17. Haenel MW, Oevers S, Angermund K, Kaska WC, Fan HJ, Hall MB (2001) Angew Chem Int Ed 40:3596

    Article  CAS  Google Scholar 

  18. Morales-Morales D, Lee DW, Wang Z, Jensen CM (2001) Organometallics 20:1144

    Article  CAS  Google Scholar 

  19. Sjovall S, Johansson MH, Anderson C (2001) Eur J Inorg Chem 2907–2912

    Google Scholar 

  20. Herrera-Alvarez C, Gomez-Bnitez V, Redon R, Garcia JJ, Hernandez-Ortega S, Toscano RA, Morales-Morales D (2004) J Organomet Chem 689:2464

    Article  CAS  Google Scholar 

  21. Eberhard MR (2004) Org Lett 6:2125–2128

    Google Scholar 

  22. Ohff M, Ohff A, van der Boom ME, Milstein D (1997) J Am Chem Soc 119:11687

    Article  CAS  Google Scholar 

  23. Olsson D, Wendt OF (2009) J Organomet Chem 694:3112

    Article  CAS  Google Scholar 

  24. Serrano-Becerra JM, Morales-Morales D (2009) Curr Org Synth 6:169

    Article  CAS  Google Scholar 

  25. Bedford RB, Draper SM, Noelle SP, Welch SL (2000) New J Chem 24:745

    Article  CAS  Google Scholar 

  26. Feller M, Ben-Ari E, Iron MA, Diskin-Posner Y, Leitus G, Shimon LJW, Konstantinovski L, Milstein D (2010) Inorg Chem 49:1615

    Article  CAS  Google Scholar 

  27. Ben-Ari E, Leitus G, Shimon LJW, Milstein D (2006) J Am Chem Soc 128:15390

    Article  CAS  Google Scholar 

  28. Gnanaprakasam B, Milstein D (2011) J Am Chem Soc 133:1682

    Article  CAS  Google Scholar 

  29. Gnanaprakasam B, Ben-David Y, Milstein D (2010) Adv Synth Catal 352:3169

    Article  CAS  Google Scholar 

  30. Gunanathan C, Ben-David Y, Milstein D (2007) Science 317:790

    Article  CAS  Google Scholar 

  31. Balaraman E, Gnanaprakasam B, Shimon LJW, Milstein D (2010) J Am Chem Soc 132:16756

    Article  CAS  Google Scholar 

  32. Zhang J, Leitus G, Ben-David Y, Milstein D (2005) J Am Chem Soc 127:10840

    Article  CAS  Google Scholar 

  33. Rokita SE (ed) (2009) Quinone methides. Wiley, Hoboken, NJ

    Google Scholar 

  34. Wagner HU, Gompper R (1974) In: Patai S (ed) The chemistry of the quinonoid compounds, vol 2. Wiley, New York, p 1145

    Google Scholar 

  35. Diao L, Yang C, Wan P (1995) J Am Chem Soc 117:5369

    Article  CAS  Google Scholar 

  36. Amouri H, Le Bras A (2002) J Acc Chem Res 35:501

    Article  CAS  Google Scholar 

  37. Ferreira SB, da Silva F, de Pinto AC, Gonzaga DTG, Ferreira VF (2009) J Heterocycl Chem 46:1080

    Article  CAS  Google Scholar 

  38. Prota G (1995) Progress in the chemistry of organic natural products, vol 64. Springer, Wien-New York, pp 93–148

    Google Scholar 

  39. Bolon DA (1970) J Org Chem 35:3666

    Article  CAS  Google Scholar 

  40. Marino JP, Dax SL (1984) J Org Chem 49:3671

    Article  CAS  Google Scholar 

  41. Demeyer D, Raes K, Fievez V, de Smet S (2004) Commun Agric Appl Biol Sci 69:103–110

    Google Scholar 

  42. Ramalho VC, Jorge N (2006) Quim Nova 29:755

    Article  CAS  Google Scholar 

  43. Moore HW, Czerniak R (1981) Med Res Rev 1:249

    Article  CAS  Google Scholar 

  44. Thompson DC, Tompson JA, Sugumaran M, Moldeus P (1993) Chem Biol Interact 86:129

    Article  CAS  Google Scholar 

  45. Dyall LK, Winstein S (1972) J Am Chem Soc 94:2196

    Article  CAS  Google Scholar 

  46. Vigalok A, Milstein D (1997) J Am Chem Soc 119:7873

    Article  CAS  Google Scholar 

  47. Gandelman M, Vigalok A, Shimon LJW, Milstein D (1997) Organometallics 16:3981

    Article  CAS  Google Scholar 

  48. Vigalok A, Shimon LJW, Milstein D (1998) J Am Chem Soc 120:477

    Article  CAS  Google Scholar 

  49. Gauvin RM, Rozenberg H, Shimon LJW, Ben-David Y, Milstein D (2007) Chem Eur J 13:1382

    Article  CAS  Google Scholar 

  50. Silvestre J, Albright TA (1985) J Am Chem Soc 107:6829

    Article  CAS  Google Scholar 

  51. Rabin O, Vigalok A, Milstein D (1998) J Am Chem Soc 120:7119

    Article  CAS  Google Scholar 

  52. Rabin O, Vigalok A, Milstein D (2000) Chem Eur J 6:454

    Article  CAS  Google Scholar 

  53. Poverenov E, Leitus G, Milstein D (2006) J Am Chem Soc 128:16450

    Article  CAS  Google Scholar 

  54. Hall MD, Hambley TW (2002) Coord Chem Rev 232:49

    Article  CAS  Google Scholar 

  55. Scolaro LM, Mazzaglia A, Romeo A, Romeo R (2002) J Inorg Biochem 91:237

    Article  Google Scholar 

  56. Poverenov E, Shimon LJW, Milstein D (2007) Organometallics 26:2178

    Article  CAS  Google Scholar 

  57. Kobayashi S, Higashimura H (2003) Prog Polym Sci 28:1015

    Article  CAS  Google Scholar 

  58. Hay AS (1998) J Polym Sci Polym Chem 36:505

    Article  CAS  Google Scholar 

  59. MacDonald PD, Hamilton GA (1973) In: Trahanovsky WS (ed) Oxidation in organic chemistry, part B, Chap. II. Academic, New York, pp 97–133

    Chapter  Google Scholar 

  60. Taylor WI, Battersby AR (1967) Oxidative coupling of phenols. Marcel Dekker, New York

    Google Scholar 

  61. Abramovitch RA, Alvernhe G, Bartnik R, Dassanayake NL, Inbasekaran MN, Kato S (1981) J Am Chem Soc 103:4558

    Article  CAS  Google Scholar 

  62. Shudo K, Orihara Y, Ohta T, Okamoto T (1981) J Am Chem Soc 103:943

    Article  CAS  Google Scholar 

  63. Zagorevskii DV, Regimbal J-M, Holmes JL (1997) Int J Mass Spectrom Ion Proc 160:211

    Article  CAS  Google Scholar 

  64. Swenton JS (1988) In: Patai S, Rappoport Z (eds) The chemistry of quinonoid compounds, vol 2. Wiley, New York, pp 899–962

    Google Scholar 

  65. Baesjou PJ, Driessen WL, Challa G, Reedijk J (1997) J Am Chem Soc 119:12590

    Article  CAS  Google Scholar 

  66. Gao J, Reibenspies JH, Martell AE (2002) Inorg Chim Acta 338:157

    Article  CAS  Google Scholar 

  67. Vigalok A, Rybtchinski B, Gozin Y, Koblenz TS, Ben-David Y, Rozenberg H, Milstein D (2003) J Am Chem Soc 125:15692

    Article  CAS  Google Scholar 

  68. Feng Y, Liu L, Fang Y, Guo Q-X (2002) J Phys Chem A 106:11518

    Article  CAS  Google Scholar 

  69. Davis CJ, Moody CJ (2002) Synlett 11:1874

    Google Scholar 

  70. Wright JS, Johnson ER, Dilabio GA (2001) J Am Chem Soc 123:1173

    Article  CAS  Google Scholar 

  71. Oyaizu K, Saito K, Tsuchida E (2000) Chem Lett 29:1318–1319

    Google Scholar 

  72. Katsoulis DE, Pope MT (1989) J Chem Soc Dalton Trans 8:1483

    Article  Google Scholar 

  73. Omura K (1984) J Org Chem 49:3046

    Article  CAS  Google Scholar 

  74. van der Boom ME, Zubkov T, Shukla A, Rybtchinski B, Shimon LJW, Rozenberg H, Ben David Y, Milstein D (2004) Angew Chem Int Ed 43:5961

    Article  CAS  Google Scholar 

  75. Shimasaki T, Tobisu M, Chatani N (2010) Angew Chem Int Ed 49:2929

    Article  CAS  Google Scholar 

  76. Bonanno JB, Henry TP, Neithamer DR, Wolczanski PT, Lobkovsky EB (1996) J Am Chem Soc 118:5132

    Article  CAS  Google Scholar 

  77. Kawaguchi H, Matsuo T (2003) J Am Chem Soc 125:14254

    Article  CAS  Google Scholar 

  78. Harvey RG (1997) Polycyclic aromatic hydrocarbons. Wiley-VCH, New York

    Google Scholar 

  79. Hopf H (2000) Classics in hydrocarbon chemistry: syntheses, concepts, perspectives. Wiley-VCH, Weinheim

    Google Scholar 

  80. Benshafrut R, Shabtai E, Rabinovitz M, Scott LT (2000) Eur J Org Chem 1091–1106

    Google Scholar 

  81. Ireland T, Perea JJA, Knochel P (1999) Angew Chem Int Ed Engl 38:1457

    Article  CAS  Google Scholar 

  82. Cohen T, Bhupathy M (1989) Acc Chem Res 22:152

    Article  CAS  Google Scholar 

  83. Mudryk B, Cohen T (1993) J Am Chem Soc 115:3855

    Article  CAS  Google Scholar 

  84. Frech CM, Weiner L, Milstein D (2006) J Am Chem Soc 128:7128

    Article  CAS  Google Scholar 

  85. Clar E (1964) Polycyclic hydrocarbons. Academic, London

    Google Scholar 

  86. Mullen K (1984) Chem Rev 84:603

    Article  Google Scholar 

  87. Jones WD, Vetter AJ, Wick DD, Northcutt TO (2004) In: Goldberg KI, Goldman AS (eds) Activation and functionalization of C-H bonds, ACS symposium series 885. American Chemical Society, Washington, DC, pp 56–69

    Chapter  Google Scholar 

  88. Goldman AS, Goldberg KI (2004) In: Goldberg KI, Goldman AS (eds) Activation and functionalization of C-H bonds, ACS symposium series 885. American Chemical Society, Washington, DC, pp 1–43

    Chapter  Google Scholar 

  89. Labinger JA, Bercaw JE (2002) Nature 417:507

    Article  CAS  Google Scholar 

  90. Shilov AE, Shul’pin GB (1997) Chem Rev 97:2879

    Article  CAS  Google Scholar 

  91. Lersch M, Tilset M (2005) Chem Rev 105:2471

    Article  CAS  Google Scholar 

  92. Sakaki S (2005) Top Organomet Chem 12:31–78

    CAS  Google Scholar 

  93. Hall C, Perutz RN (1996) Chem Rev 96:3125–3146

    Article  CAS  Google Scholar 

  94. Crabtree RH (1993) Angew Chem Int Ed 32:789

    Article  Google Scholar 

  95. Brookhart M, Green MLH (1983) J Organomet Chem 250:395–408

    Google Scholar 

  96. Vigalok A, Uzan O, Shimon LJW, Ben-David Y, Martin JML, Milstein D (1998) J Am Chem Soc 120:12539

    Article  CAS  Google Scholar 

  97. Mohammad HAY, Grimm JC, Eichele K, Mack H-G, Speiser B, Novak F, Quintanilla MG, Kaska WC, Mayer HA (2002) Organometallics 21:5775

    Article  CAS  Google Scholar 

  98. Dani P, Karlen T, Gossage RA, Smeets WJJ, Spek AL, van Koten G (1997) J Am Chem Soc 119:11317

    Article  CAS  Google Scholar 

  99. Albrecht M, Dani P, Lutz M, Spek AL, van Koten G (2000) J Am Chem Soc 122:11822

    Article  CAS  Google Scholar 

  100. Gusev DG, Madott M, Dolgushin FM, Lyssenko KA, Antipin MY (2000) Organometallics 19:1734

    Article  CAS  Google Scholar 

  101. Dani P, Toorneman MAM, van Klink GPM, van Koten G (2000) Organometallics 19:5287

    Article  CAS  Google Scholar 

  102. van der Boom ME, Iron MA, Atasoylu O, Shimon LJW, Rozenberg H, Ben-David Y, Konstantinovski L, Martin JML, Milstein D (2004) Inorg Chim Acta 357:1854

    Article  CAS  Google Scholar 

  103. Saillard J-Y, Hoffmann R (1984) J Am Chem Soc 106:2006–2026

    Article  CAS  Google Scholar 

  104. Ozawa F (2003) In: Kurosaw H, Yamamoto A (eds) Current methods in inorganic chemistry, vol 3. Elsevier, Amsterdam, pp 479–512

    Google Scholar 

  105. Tatsumi K, Hoffmann R, Yamamoto A, Stille JK (1981) Bull Chem Soc Jpn 54:1857–1867

    Article  CAS  Google Scholar 

  106. Su M-D, Chu S-Y (1998) Inorg Chem 37:3400–3406

    Article  CAS  Google Scholar 

  107. Montag M, Schwartsburd L, Cohen R, Leitus G, Ben-David Y, Martin J-ML, Milstein D (2007) Angew Chem Int Ed 46:1901

    Article  CAS  Google Scholar 

  108. Montag M, Efremenko I, Cohen R, Shimon LJW, Leitus G, Diskin-Posner Y, Ben-David Y, Salem H, Martin J-ML, Milstein D (2010) Chem Eur J 16:328

    Article  CAS  Google Scholar 

  109. Gandelman M, Shimon LJW, Milstein D (2003) Chem Eur J 9:4295

    Article  CAS  Google Scholar 

  110. Frech C, Shimon LJW, Milstein D (2005) Angew Chem Int Ed 44:1709

    Article  CAS  Google Scholar 

  111. Kiewel K, Liu Y, Bergbreiter DE, Sulikowski GA (1999) Tetrahedron Lett 40:8945

    Article  CAS  Google Scholar 

  112. Bröring M, Brandt CD (2002) J Chem Soc Dalton Trans 1391–1395

    Google Scholar 

  113. Yeo JSL, Vittal JJ, Hor TSA (1999) Chem Commun 1477–1478

    Google Scholar 

  114. Kraatz H-B, van der Boom ME, Ben-David Y, Milstein D (2001) Isr J Chem 41:163

    Article  CAS  Google Scholar 

  115. Schwartsburd L, Cohen R, Konstantinovski L, Milstein D (2008) Angew Chem Int Ed 47:3603–3606

    Article  CAS  Google Scholar 

  116. Otsuka S (1980) J Organomet Chem 200:191

    Article  CAS  Google Scholar 

  117. Reger DL, Ding Y (1994) Organometallics 13:1047

    Article  CAS  Google Scholar 

  118. Rendina LM, Hambley TW (2004) In: McCleverty JA, Meyer TJ (eds) Comprehensive coordination chemistry II, vol 6, 2nd edn. Elsevier, Oxford, pp 673–745

    Chapter  Google Scholar 

  119. Amatore C, Jutand A (2000) Acc Chem Res 33:314

    Article  CAS  Google Scholar 

  120. Amatore C, Jutand A, Lemaitre F, Ricard JL, Kozuch S, Shaik S (2004) J Organomet Chem 689:3728

    Article  CAS  Google Scholar 

  121. Gandelman M, Milstein D (2000) Chem Commun 1603–1604

    Google Scholar 

  122. Togni A, Venanzi L (1994) Angew Chem Int Ed Engl 33:497

    Article  Google Scholar 

  123. Kraus MJ, Bergman RG (1985) J Am Chem Soc 107:2972

    Article  Google Scholar 

  124. Tachikawa M, Sievert AC, Muetterties EL, Day CS, Day VW (1980) J Am Chem Soc 102:1725

    Article  CAS  Google Scholar 

  125. Ellis JE, Faltynek RA (1977) J Am Chem Soc 99:1801

    Article  CAS  Google Scholar 

  126. Ellis JE, Parnell CP, Hagen GP (1978) J Am Chem Soc 100:3605

    Article  CAS  Google Scholar 

  127. Jonas K, Schieferstein L, Kruger C, Tsay YH (1979) Angew Chem Int Ed Engl 18:550

    Article  Google Scholar 

  128. Bennett MA, Patmore JD (1971) Inorg Chem 10:2387

    Article  CAS  Google Scholar 

  129. Muetterties EL, Hirsekorn FJ (1974) J Am Chem Soc 96:7920

    Article  CAS  Google Scholar 

  130. Watson PL, Muetterties EL (1978) J Am Chem Soc 100:6978

    Article  Google Scholar 

  131. Klein HF, Schmidbaur H, Karsch HH (1975) Angew Chem Int Ed Engl 14:637

    Article  Google Scholar 

  132. Del Paggio AA, Andersen RA, Muetterties EL (1987) Organometallics 6:1260

    Article  Google Scholar 

  133. Poverenov E, Gandelman M, Shimon LJW, Rozenberg H, Ben-David Y, Milstein D (2004) Eur J Org Chem 10:4673–84

    Article  CAS  Google Scholar 

  134. Poverenov E, Iron MA, Gandelman M, Ben-David Y, Milstein D (2010) Eur J Inorg Chem 13:1991–1999

    Article  CAS  Google Scholar 

  135. Shilov AE, Shul’pin GB (2000) Activation and catalytic reactions of saturated hydrocarbons in the presence of metal complexes. Kluwer, Dordrecht

    Google Scholar 

  136. Batsanov AD, Howard JAK, Love JB, Spencer JL (1995) Organometallics 14:5657–5664

    Article  CAS  Google Scholar 

  137. O’Reilly SA, White PS, Templeton JL (1996) J Am Chem Soc 118:5684–5689

    Article  Google Scholar 

  138. Prokopchuk EM, Jenkins HA, Puddephatt RJ (1999) Organometallics 18:2861–2866

    Article  CAS  Google Scholar 

  139. Vedernikov AN, Fettinger JC, Mohr F (2004) J Am Chem Soc 126:11160–11161

    Article  CAS  Google Scholar 

  140. Iron MA, Lo HC, Martin JML, Keinan E (2002) J Am Chem Soc 124:7041–7054

    Article  CAS  Google Scholar 

  141. Wick DD, Goldberg KI (1997) J Am Chem Soc 119:10235–10236

    Article  CAS  Google Scholar 

  142. Stahl SS, Labinger JA, Bercaw JE (1995) J Am Chem Soc 117:9371–9372

    Article  CAS  Google Scholar 

  143. Hackett M, Ibers JA, Whitesides GM (1988) J Am Chem Soc 110:1436–1448

    Article  CAS  Google Scholar 

  144. Abis L, Sen A, Halpern J (1978) J Am Chem Soc 100:2915–2916

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Milstein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Poverenov, E., Milstein, D. (2013). Noninnocent Behavior of PCP and PCN Pincer Ligands of Late Metal Complexes. In: van Koten, G., Milstein, D. (eds) Organometallic Pincer Chemistry. Topics in Organometallic Chemistry, vol 40. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31081-2_2

Download citation

Publish with us

Policies and ethics