Skip to main content

Definition and Analysis of New Agricultural Farm Energetic Indicators Using Spatial OLAP

  • Conference paper
Computational Science and Its Applications – ICCSA 2012 (ICCSA 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7334))

Included in the following conference series:

Abstract

Agricultural energy consumption is an important environmental and social issue. Several diagnoses have been proposed to define indicators for analyzing energy consumption at large scale of agricultural farm activities (year, farm, family of production, etc.). However, to define ad-hoc environmental energetic policies to better monitor and control energy consumption, new indicators at a most detailed scale are needed. Moreover, by defining detailed scale indicators, large quantities of geo-referenced data need to be collected to feed these energetic diagnoses. This huge volume of data represents another important limitation of systems that implement these diagnoses because they are usually based on classical data storage systems (such as spreadsheet tools and Database Management Systems). These systems do not allow for interactive analysis at different granularities/scales of huge volumes of data and do not provide any cartographic representation. By contrast, Spatial OLAP (SOLAP) and spatial data warehouse (SDW) systems allow for the analysis of huge volumes of geo-referenced data by providing aggregated numerical values visualized by means of interactive tabular, graphical and cartographic displays. Thus, in this paper, we (i) propose new appropriate indicators to analyze agricultural farm energy performance at a detailed scale and (ii) show how SDW and SOLAP technologies can be used to represent, store and analyze these indicators by simultaneously producing expressive reports.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdullah, A., Brobst, S., Umer, M., Khan, M.: The Case for an Agri Data Warehouse: Enabling Analytical Exploration of Integrated Agricultural Data. In: International Conference on Databases and Applications, pp. 139–144. IASTED/ACTA Press (2004)

    Google Scholar 

  2. Bailey, A.P., Basford, W., Penlington, N., Park, J., Keatinge, J., Rehmana, T., Tranter, R.B., Yates, C.: A comparison of energy use in conventional and integrated arable farming systems in the UK Agriculture. Ecosystems and Environment 97, 241–253 (2003)

    Article  Google Scholar 

  3. Bédard, Y., Han, J.: Fundamentals of Spatial Data Warehousing for Geographic Knowledge Discovery. In: Geographic Data Mining and Knowledge Discovery. Taylor & Francis (2001)

    Google Scholar 

  4. Bimonte, S., Tchounikine, A., Miquel, M., Pinet, F.: When Spatial Analysis Meets OLAP: Multidimensional Model and Operators. International Journal of Data Warehousing and Mining 6(4), 33–60 (2010)

    Article  Google Scholar 

  5. Boulil, K., Bimonte, S., Pinet, F.: Un modèle UML et des contraintes OCL pour les entrepôts de données spatiales. De la représentation conceptuelle à l’implémentation. Ingénierie des Systèmes d’Information 16(6), 11–39 (2011)

    Article  Google Scholar 

  6. Chaudhary, S., Sorathia, V., Laliwala, Z.: Architecture of sensor based agricultural information system for effective planning of farm activities. In: IEEE International Conference on Services Computing, pp. 93–100. IEEE (2004)

    Google Scholar 

  7. Clements, A., Pfeiffera, D., Otteb, M., Morteoc, K., Chenb, L.: A global livestock production and health atlas (GLiPHA) for interactive presentation, integration and analysis of livestock data. Preventive Veterinary Medicine 56(1), 19–32 (2004)

    Article  Google Scholar 

  8. Gras, R., Benoît, M., Deffontaines, J.P., Duru, M., Lafarge, M., Langlet, A., Osty, P.L.: Le Fait Technique en Agronomic: Activité Agricole, Concepts et Méthodes d’Étude. L’Harmattan, Paris (1989)

    Google Scholar 

  9. Maceachren, A.M., Gahegan, M., Pike, W., Brewer, I., Cai, G., Lengerich, E., Hardistyn, F.: Geovisualization for Knowledge Construction and Decision Support. Computer Graphics and Application 24(1), 13–17 (2004)

    Article  Google Scholar 

  10. Mitchell, G., May, A., McDonald, A.: PICABUE: A methodological framework for the development of indicators of sustainable development. International Journal of Sustainable Development and World Ecology 2(2), 104–123 (1995)

    Article  Google Scholar 

  11. Nilakanta, S., Scheibe, K., Rai, A.: Dimensional issues in agricultural data warehouse designs. Journal Computers and Electronics in Agriculture Archive 60(2), 263–278 (2008)

    Article  Google Scholar 

  12. Pervanchon, F., Bockstaller, C., Girardin, P.: Assessment of energy use in arable farming systems by means of an agro-ecological indicator: The energy indicator. Agricultural Systems 72(2), 149–172 (2002)

    Article  Google Scholar 

  13. Pradel, M., Boffety, D.: Quels indicateurs et solutions technologiques adaptés pour évaluer finement les performances énergétiques des exploitations agricoles? Sciences, Eaux et Territoires 7, 16–29 (2012)

    Google Scholar 

  14. Rai, A., Dubeya, V., Chaturvedia, V., Malhotraa, K.: Design and development of data mart for animal resources. Computers and Electronics in Agriculture 64(2), 111–119 (2008)

    Article  Google Scholar 

  15. Kimball, R.: The Data Warehouse Toolkit: Practical Techniques for Building Dimensional Data Warehouses. John Wiley & Sons, New York (1996)

    Google Scholar 

  16. Schulze, C., Spilke, J., Lehner, W.: Data modeling for Precision Dairy Farming within the competitive field of operational and analytical tasks. Computers and Electronics in Agriculture 59(1), 39–55 (2007)

    Article  Google Scholar 

  17. SOLAGRO: Energie dans les exploitations agricoles: état des lieux en Europe et éléments de réflexion pour la France. Etude ADEME/ MAP 0671C0036 (2007)

    Google Scholar 

  18. Thornsbury, S., Davis, K., Minton, T.: Adding Value to Agricultural Data: A Golden Opportunity. Review of Agricultural Economics 25(2), 550–568 (2003)

    Article  Google Scholar 

  19. Vilain, L.: La méthode IDEA, Indicateurs de durabilité des exploitations, Guide d’utilisation, Educagri Edition (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bimonte, S., Boulil, K., Chanet, JP., Pradel, M. (2012). Definition and Analysis of New Agricultural Farm Energetic Indicators Using Spatial OLAP. In: Murgante, B., et al. Computational Science and Its Applications – ICCSA 2012. ICCSA 2012. Lecture Notes in Computer Science, vol 7334. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31075-1_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31075-1_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31074-4

  • Online ISBN: 978-3-642-31075-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics