Advertisement

Abstract

Business process models explicitly capture an organization’s operations and thus are essential to a process oriented organization. Typically, hundreds or thousands of models are stored in business process repositories. Effective capabilities to manage and, in particular, search are required to leverage stored business process models.

Yet, search remains a challenge, because business processes cannot easily be compared. Existing approaches to process similarity do not support queries that are significantly smaller than sought models and contain only few, yet important, aspects.

In this paper, we introduce a novel approach to behavioral similarity search that is sensitive to local behavior inclusion, i.e., it will feature models that contain the behavior of a query. This is achieved by comparing local behavioral relationships of a query model with global relationships of candidate models. We present the formal foundation of this approach, derive a similarity measure, and illustrate the applicability of our approach, also with respect to complexity.

Keywords

process model search behavioral similarity weak order precedence order 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akkiraju, R., Ivan, A.: Discovering Business Process Similarities: An Empirical Study with SAP Best Practice Business Processes. In: Maglio, P.P., Weske, M., Yang, J., Fantinato, M. (eds.) ICSOC 2010. LNCS, vol. 6470, pp. 515–526. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  2. 2.
    La Rosa, M., Reijers, H.A., van der Aalst, W.M.P., Dijkman, R.M., Mendling, J., Dumas, M., Garcia-Banuelos, L.: Apromore: An advanced process model repository (2009), http://eprints.qut.edu.au/27448/
  3. 3.
    Vanhatalo, J., Völzer, H., Leymann, F., Moser, S.: Automatic Workflow Graph Refactoring and Completion. In: Bouguettaya, A., Krueger, I., Margaria, T. (eds.) ICSOC 2008. LNCS, vol. 5364, pp. 100–115. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    Lohmann, N., Verbeek, E., Dijkman, R.: Petri Net Transformations for Business Processes – A Survey. In: Jensen, K., van der Aalst, W.M.P. (eds.) ToPNoC II. LNCS, vol. 5460, pp. 46–63. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    van der Aalst, W., Weijters, T., Maruster, L.: Workflow mining: Discovering process models from event logs. IEEE Trans. on Knowl. and Data Eng. 16, 1128–1142 (2004)CrossRefGoogle Scholar
  6. 6.
    Weidlich, M., Mendling, J., Weske, M.: Efficient consistency measurement based on behavioural profiles of process models. IEEE Trans. Softw. Eng. 37(3), 410–429 (2011)CrossRefGoogle Scholar
  7. 7.
    Kunze, M., Weidlich, M., Weske, M.: Behavioral Similarity – A Proper Metric. In: Rinderle-Ma, S., Toumani, F., Wolf, K. (eds.) BPM 2011. LNCS, vol. 6896, pp. 166–181. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  8. 8.
    Dumas, M., García-Bañuelos, L., Dijkman, R.M.: Similarity Search of Business Process Models. IEEE Data Eng. Bull. 32(3), 23–28 (2009)Google Scholar
  9. 9.
    Hidders, J., Dumas, M., van der Aalst, W.M.P., ter Hofstede, A.H.M., Verelst, J.: When are two workflows the same? In: CATS 2005, pp. 3–11. Australian Computer Society, Inc. (2005)Google Scholar
  10. 10.
    van Glabbeek, R.J., Peter Weijland, W.: Branching Time and Abstraction in Bisimulation Semantics. J. ACM 43(3), 555–600 (1996)CrossRefGoogle Scholar
  11. 11.
    Curran, T., Keller, G., Ladd, A.: SAP R/3 Business Blueprint: Understanding the Business Process Reference Model. Prentice-Hall, Inc., Upper Saddle River (1997)Google Scholar
  12. 12.
    Levenshtein, V.I.: Binary Codes Capable of Correcting Deletions, Insertions and Reversals. Soviet Physics Doklady 10, 707 (1966)Google Scholar
  13. 13.
    Dijkman, R., Dumas, M., García-Bañuelos, L.: Graph Matching Algorithms for Business Process Model Similarity Search. In: Dayal, U., Eder, J., Koehler, J., Reijers, H.A. (eds.) BPM 2009. LNCS, vol. 5701, pp. 48–63. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  14. 14.
    Yan, Z., Dijkman, R., Grefen, P.: Fast Business Process Similarity Search with Feature-Based Similarity Estimation. In: Meersman, R., Dillon, T.S., Herrero, P. (eds.) OTM 2010. LNCS, vol. 6426, pp. 60–77. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  15. 15.
    Wang, J., He, T., Wen, L., Wu, N., ter Hofstede, A.H.M., Su, J.: A Behavioral Similarity Measure between Labeled Petri Nets Based on Principal Transition Sequences. In: Meersman, R., Dillon, T.S., Herrero, P. (eds.) OTM 2010. LNCS, vol. 6426, pp. 394–401. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  16. 16.
    Grigori, D., Corrales, J.C., Bouzeghoub, M.: Behavioral Matchmaking for Service Retrieval. In: ICWS 2006, pp. 145–152. IEEE Computer Society (2006)Google Scholar
  17. 17.
    Nejati, S., Sabetzadeh, M., Chechik, M., Easterbrook, S., Zave, P.: Matching and Merging of Statecharts Specifications. In: ICSE 2007, pp. 54–64. IEEE Computer Society (2007)Google Scholar
  18. 18.
    Ehrig, M., Koschmider, A., Oberweis, A.: Measuring Similarity between Semantic Business Process Models. In: APCCM 2007, pp. 71–80. Australian Computer Society, Inc. (2007)Google Scholar
  19. 19.
    Dijkman, R., Dumas, M., van Dongen, B., Käärik, R., Mendling, J.: Similarity of business process models: Metrics and evaluation. Information Systems 36(2), 498–516 (2011); Special Issue: Semantic Integration of Data, Multimedia, and ServicesGoogle Scholar
  20. 20.
    Manning, C.D., Schütze, H.: Foundations of statistical natural language processing. MIT Press, Cambridge (1999)Google Scholar
  21. 21.
    Miller, G.A.: Wordnet: a lexical database for english. Commun. ACM 38, 39–41 (1995)CrossRefGoogle Scholar
  22. 22.
    Minor, M., Tartakovski, A., Bergmann, R.: Representation and Structure-Based Similarity Assessment for Agile Workflows. In: Weber, R.O., Richter, M.M. (eds.) ICCBR 2007. LNCS (LNAI), vol. 4626, pp. 224–238. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  23. 23.
    Lu, R., Sadiq, S.K.: On the Discovery of Preferred Work Practice Through Business Process Variants. In: Parent, C., Schewe, K.-D., Storey, V.C., Thalheim, B. (eds.) ER 2007. LNCS, vol. 4801, pp. 165–180. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  24. 24.
    van der Aalst, W.M.P., Alves de Medeiros, A.K., Weijters, A.J.M.M.T.: Process Equivalence: Comparing Two Process Models Based on Observed Behavior. In: Dustdar, S., Fiadeiro, J.L., Sheth, A.P. (eds.) BPM 2006. LNCS, vol. 4102, pp. 129–144. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  25. 25.
    Eshuis, R., Grefen, P.: Structural Matching of BPEL Processes. In: ECOWS 2007, pp. 171–180. IEEE Computer Society (2007)Google Scholar
  26. 26.
    Beeri, C., Eyal, A., Kamenkovich, S., Milo, T.: Querying Business Processes with BP-QL. In: VLDB, pp. 1255–1258 (2005)Google Scholar
  27. 27.
    Awad, A.: BPMN-Q: A Language to Query Business Processes. In: EMISA, pp. 115–128 (2007)Google Scholar
  28. 28.
    Choi, I., Kim, K., Jang, M.: An XML-based Process Repository and Process Query Language for Integrated Process Management. Knowledge and Process Management 14(4), 303–316 (2007)CrossRefGoogle Scholar
  29. 29.
    Awad, A., Sakr, S., Kunze, M., Weske, M.: Design by Selection: A Reuse-Based Approach for Business Process Modeling. In: Jeusfeld, M., Delcambre, L., Ling, T.-W. (eds.) ER 2011. LNCS, vol. 6998, pp. 332–345. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  30. 30.
    Burkhart, T., Werth, D., Loos, P.: Flexible Process Support by Automatic Aggregation of Implicit and Explicit User Behavior. In: ICADIWT 2011. IEEE Computer Society (2011)Google Scholar
  31. 31.
    Kunze, M., Weske, M.: Metric trees for efficient similarity search in large process model repositories. In: Muehlen, M.z., Su, J. (eds.) BPM 2010 Workshops. LNBIP, vol. 66, pp. 535–546. Springer, Heidelberg (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Matthias Kunze
    • 1
  • Mathias Weske
    • 1
  1. 1.Hasso Plattner Institute at the University of PotsdamPotsdamGermany

Personalised recommendations