Skip to main content

Effects of Turbulence on Fish Swimming in Aquaculture

  • Chapter
  • First Online:
Swimming Physiology of Fish

Abstract

The role of turbulence in aquaculture facilities is a multi-faceted, largely unexplored, and potentially important topic in understanding the energetics and behavior of rearing fishes. Here, we review some common principles of turbulent flow and discuss methods to measure and describe them. Flows that display chaotic and wide fluctuations in velocity can repel fishes, while flows that have a component of predictability can attract fishes. We reveal how fish in turbulence can save energy by using two distinct, though not mutually exclusive mechanisms; flow refuging (exploiting regions of reduced flow) and vortex capture (harnessing the energy of discrete vortices). We summarize the energetics of fish holding station in turbulent flows around a cylinder from recent work. Turbulent flows can also create instabilities that negatively affect fishes, such as reducing critical swimming speed and increasing oxygen consumption. Our aim is to discuss aspects of turbulence from key lab and field experiments which may prove productive if applied to aquaculture systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson JM (1996) Vorticity control for efficient propulsion. MIT Ph D thesis, Applied Ocean Science Engineering, 1–193

    Google Scholar 

  • Anderson JM, Streitlien K, Barrett DS, Triantafyllou MS (1998) Oscillating foils of high propulsive efficiency. J Fluid Mech 360:41–72

    Article  Google Scholar 

  • Arnold GP, Weihs D (1978) The hydrodynamics of rheotaxis in the plaice (Pleuronectes platessa). J Exp Biol 1:147–169

    Google Scholar 

  • Beal DN (2003) Propulsion through wake synchronization using a flapping foil. MIT Ph D thesis, Department of Mechanical Engineering, 1–150

    Google Scholar 

  • Beal DN, Hover FS, Triantafyllou MS, Liao JC (2006) Passive propulsion in vortex wakes. J Fluid Mech 549:385–402

    Article  Google Scholar 

  • Blevins RD (1990) Flow induced vibration. Krieger Publishing Company, Malabar, pp 1–477

    Google Scholar 

  • Bodensteiner LR, Sheehan RJ, Wills PS, Brandenburg AM, Lewis WM (2000) Flowing water: an effective treatment for ichthyophthiriasis. J Aquat Anim Health 12:209–219. doi:10.1577/1548-8667

    Article  Google Scholar 

  • Bose N, Lien J (1990) Energy absorption from ocean waves: a free ride for cetaceans. Proc R Soc Lond B 240:591–605

    Article  PubMed  CAS  Google Scholar 

  • Breder CM (1965) Vortices and fish schools. Zoologica 50:97–114

    Google Scholar 

  • Burrows R, Chenoweth H (1970) The rectangular circulating rearing pond. Prog Fish Cult 32:67–80

    Article  Google Scholar 

  • Bustard DR, Narver DW (1975) Aspects of the winter ecology of juvenile coho salmon (Oncorhynchus kisutch) and steelhead trout (Salmo gairdneri). J Fish Res Board Can 32:667–680

    Article  Google Scholar 

  • Cotel AJ, Semrau JD (2003) Effect of turbulent strain rate on E. coli cell viability. In: 56th annual meeting of the division of fluid dynamics. American Physical Society, Meadowbrook

    Google Scholar 

  • Cotel AJ, Webb PW, Tritico H (2006) Do brown trout choose locations with reduced turbulence? Trans Am Fish Soc 135:610–619. doi:10.1577/t04-196.1

    Article  Google Scholar 

  • Cotel A J, Webb P W (2011) The challenge of understanding and quantifying fish responses to turbulence-dominated physical environments. In: Natural locomotion in fluids and on surfaces: swimming, flying, and sliding (University of Minnesota, Institute for Mathematics and its Applications)

    Google Scholar 

  • Coutant CC, Whitney RR (2000) Fish behavior in relation to passage through hydropower turbines: a review. Trans Am Fish Soc 129:351–380

    Article  Google Scholar 

  • Crowder DW, Diplas P (2002) Vorticity and circulation: spatial metrics for evaluating flow complexity in stream habitats. Can J Fish Aquat Sci 59:633–645. doi:10.1139/f02-037

    Article  Google Scholar 

  • deGraaf DA, Bain LH (1986) Habitat use by and preferences of juvenile Atlantic salmon in two Newfoundland rivers. Trans Am Fish Soc 115:671–681

    Article  Google Scholar 

  • Enders EC, Boisclair D, Roy AG (2003) The effect of turbulence on the cost of swimming for juvenile Atlantic salmon. Can J Fish Aquat Sci 60:1149–1160

    Article  Google Scholar 

  • Fausch KD (1993) Experimental analysis of microhabitat selection by juvenile steelhead (Oncorhynchus mykiss) and coho salmon (O. kisutch) in a British Columbia stream. Can J Fish Aquat Sci 50:1198–1207

    Article  Google Scholar 

  • Fausch KD, White RJ (1986) Competition among juveniles of coho salmon, brook trout, and brown trout in a laboratory stream, and implications for great lakes tributaries. Trans Am Fish Soc 115:363–381. doi:10.1577/1548-8659

    Article  Google Scholar 

  • Fivelstad S, Haavik H, Lovik G, Olsen AB (1998) Sublethal effects and safe levels of carbon dioxide for Atlantic salmon postmolts (Salmo solar L.). Aquaculture 160:305–316

    Article  Google Scholar 

  • Gerrard JH (1966) Formation region of vortices behind bluff bodies. J Fluid Mech 25:401–413

    Article  Google Scholar 

  • Gerstner CL (1998) Use of substratum ripples for flow refuging by Atlantic cod, Gadus morhua. Environ Biol Fish 51:455–460

    Article  Google Scholar 

  • Golpalkrishnan R, Triantafyllou MS, Triantafyllou GS, Barrett DS (1994) Active vorticity control in a shear flow using a flapping foil. J Fluid Mech 274:1–21

    Article  Google Scholar 

  • Grass AJ, Stuart RJ, Mansou-Tehrani M (1991) Vortical structures and coherent motion in turbulent flow over smooth and rough boundaries. Philos Trans R Soc Lond A 336:35–65

    Article  Google Scholar 

  • Hartman GF (1965) The role of behaviour in the ecology and interactions of underyearling coho salmon (Oncorhynchus kisutch) and steelhead trout (Salmo gairdneri). J Fish Res Board Can 22:1035–1081

    Article  Google Scholar 

  • Hayes JW, Jowett IG (1994) Microhabitat models of large drift-feeding brown trout in three New Zealand rivers. N Am J Fish Manag 14:710–724

    Article  Google Scholar 

  • Heggenes J (2002) Flexible summer habitat selection by wild, allopatric brown trout in lotic environments. Trans Am Fish Soc 131:287–298

    Article  Google Scholar 

  • Herskin J, Steffensen JF (1998) Energy savings in sea bass swimming in a school: measurements of tail beat frequency and oxygen consumption at different swimming speeds. J Fish Biol 53:366–376

    Article  Google Scholar 

  • Hinch SG, Rand PS (1998) Swim speeds and energy use of up-river migrating sockeye salmon (Oncorhynchus nerka): role of the local environment and fish characteristics. Can J Fish Aquat Sci 55:1821–1831

    Article  Google Scholar 

  • Hinch SG, Rand PS (2000) Optimal swimming speeds and forward-assisted propulsion: energy-conserving behaviours if upriver-migrating adult salmon. Can J Fish Aquat Sci 57:2470–2478

    Article  Google Scholar 

  • Jorgensen EH, JS Christiansen, Jobling M (1993) Effects of stocking density on food intake, growth performance and oxygen consumption in Arctic charr (Salvelinus alpinus). Aquaculture 110:191–204

    Article  Google Scholar 

  • Kirkbride AD (1993) Observations of the influence of bed roughness on turbulence structure in depth limited flows over gravel beds. Wiley, Chichester, pp 185–196

    Google Scholar 

  • Kolmogorov AN (1941) Local structure of turbulence in an incompressible viscous fluid at very high Reynolds numbers. Dolk Akad Nauk SSSR 30:299 reprinted in Usp Fix Nauk 93, 476–481

    Google Scholar 

  • Liao JC (2004) Neuromuscular control of trout swimming in a vortex street: implications for energy economy during the Karman gait. J Exp Biol 207:3495–3506

    Article  PubMed  Google Scholar 

  • Liao JC (2006) The role of the lateral line and vision on body kinematics and hydrodynamic preference of rainbow trout in turbulent flow. J Exp Biol 209:4077–4090. doi:10.1242/jeb.02487

    Article  PubMed  Google Scholar 

  • Liao JC (2007) A review of fish swimming mechanics and behaviour in altered flows. Philos Trans R Soc Lond B Biol Sci 362:1973–1993. doi:10.1098/rstb.2007.2082

    Article  PubMed  Google Scholar 

  • Liao JC, Beal DN, Lauder GV, Triantafyllou MS (2003a) The Kármán gait; novel kinematics of rainbow trout swimming in a vortex street. J Exp Biol 206:1059–1073

    Article  PubMed  Google Scholar 

  • Liao JC, Beal DN, Lauder GV, Triantafyllou MS (2003b) Fish exploiting vortices decrease muscle activity. Science 302:1566–1569. doi:10.1126/science.1088295

    Article  PubMed  CAS  Google Scholar 

  • Lighthill J (1975) Mathematical biofluiddynamics. Society for Industrial and Applied Mathematics, Philadelphia

    Book  Google Scholar 

  • McLaughlin RL, Noakes DLG (1998) Going against the flow: an examination of the propulsive movements made by young brook trout in streams. Can J Fish Aquat Sci 55:853–860

    Article  Google Scholar 

  • McMahon TE, Gordon FH (1989) Influence of cover complexity and current velocity on winter habitat use by juvenile coho salmon (Oncorhynchus kisutch). Can J Fish Aquat Sci 46:1551–1557

    Article  Google Scholar 

  • McRobbie AS, Shinn AP (2011) A modular, mechanical rotary device for the cleaning of commercial-scale circular tanks used in aquaculture. Aquaculture 317:16–19

    Article  Google Scholar 

  • Montgomery JC, McDonald F, Baker CF, Carton AG, Ling N (2003) Sensory integration in the hydrodynamic world of rainbow trout. Proc R Soc Lond B 270(Suppl 2):S195–S197

    Article  Google Scholar 

  • Newman JN, Wu TY (1975) In: Hydrodynamical aspects of fish swimming. Symposium on Swimming and Flying in Nature, pp 615–634

    Google Scholar 

  • Odeh M, Noreika J F, Haro A, Maynard A, Castro-Santos T, and Cada G F (2002) Evaluation of the effects of turbulence on the behavior of migratory fish. In: Final report 2002 to Bonneville Power Administration, vol. Contract No. 00000022, pp. 1-55

    Google Scholar 

  • Pavlov DS, Skorobogatov MA, Shtaf LG (1982) The critical current velocity of fish and the degree of flow turbulence. Rep USSR Acad Sci 267:1019–1021

    Google Scholar 

  • Pavlov DS, Lupandin AI, Skorobogatov MA (2000) The effects of flow turbulence on the behavior and distribution of fish. J Ichthyol 40:S232–S261

    Google Scholar 

  • Pillay TVR, Kutty MN (2005) Aquaculture: principles and practices. Wiley, Oxford

    Google Scholar 

  • Przybilla A, Kunze S, Rudert A, Bleckmann H, Brucker C (2010) Entraining in trout: a behavioural and hydrodynamic analysis. J Exp Biol 213:2976–2986. doi:10.1242/jeb.041632

    Article  PubMed  Google Scholar 

  • Puckett KJ, Dill LM (1984) The energetics of feeding territoriality in juvenile coho salmon (Oncorhynchus kisutch). Behaviour 92:97–110

    Article  Google Scholar 

  • Rehmann CR, Stoeckel JA, Schneider DW (2003) Effect of turbulence on the mortality of zebra mussel veligers. Can J Zool 81:1063–1069

    Article  Google Scholar 

  • Reig L, Piedrahita RH, Conklin DE (2007) Influence of California halibut (Paralichthys californicus) on the vertical distribution of dissolved oxygen in a raceway and a circular tank at two depths. Aquac Eng 36:261–271

    Article  Google Scholar 

  • Sanford LP (1997) Turbulent mixing in experimental ecosystem studies. Mar Ecol Prog Ser (Halstenbek) 161:265

    Article  CAS  Google Scholar 

  • Shirvell CS, Dungey RG (1983) Microhabitats chosen by brown trout for feeding and spawning in rivers. Trans Am Fish Soc 112:355–367

    Article  Google Scholar 

  • Shuler SW, Nehring RB, Fausch KD (1994) Diel habitat selection by brown trout in the Rio Grande river, Colorado, after placement of boulder structures. N Am J Fish Manag 14:99–111

    Article  Google Scholar 

  • Smith DL (2003) The shear flow environment of juvenile salmonids. Ph D dissertation, University of Idaho, Moscow

    Google Scholar 

  • Smith DL, Brannon EL (2005) Response of juvenile rainbow trout to turbulence produced by prismatoidal shapes. Trans Am Fish Soc 134:741–753

    Article  Google Scholar 

  • Smith DL, Brannon EL, Shafii B, Odeh M (2006) Use of the average and fluctuating velocity components for estimation of volitional rainbow trout density. Trans Am Fish Soc 135:431–441. doi:10.1577/t04-193.1

    Article  Google Scholar 

  • Streitlien K, Triantafyllou GS (1996) Efficient foil propulsion through vortex control. AIAA J 34:2315–2319

    Article  Google Scholar 

  • Sutterlin AM, Waddy S (1975) Possible role of the posterior lateral line in obstacle entrainment by brook trout (Salvelinus fontinalis). J Fish Res Board Can 32:2441–2446

    Article  Google Scholar 

  • Taguchi M, Liao JC (2011) Rainbow trout consume less oxygen in turbulence: the energetics of swimming behaviors at different speeds. J Exp Biol 214:1428–1436

    Article  PubMed  Google Scholar 

  • Timmons MB, Summerfelt ST, Vinci BJ (1998) Review of circular tank technology and management. Aquac Eng 18:51–69

    Article  Google Scholar 

  • Triantafyllou GS, Techet AH, Zhu Q, Beal DN, Hover FS, Yue DK (2002) Vorticity control in fish-like propulsion and maneuvering. Integr Comp Biol 42:1026–1031

    Article  PubMed  CAS  Google Scholar 

  • Triantafyllou MS, Triantafyllou GS, Yue DKP (2000) Hydrodynamics of fishlike swimming. Annu Rev Fluid Mech 32:33–53

    Article  Google Scholar 

  • Tritico HM, Cotel AJ (2010) The effects of turbulent eddies on the stability and critical swimming speed of creek chub (Semotilus atromaculatus). J Exp Biol 213:2284–2293. doi:10.1242/jeb.041806

    Article  PubMed  CAS  Google Scholar 

  • Vogel S (1994) Life in moving fluids: the physical biology of flow. Princeton University Press, Princeton

    Google Scholar 

  • Warhaft Z (2002) Turbulence in nature and in the laboratory. Proc Natl Acad Sci U S A 99(Suppl 1):2481–2486. doi:10.1073/pnas.012580299

    Article  PubMed  Google Scholar 

  • Webb PW (1989) Station-holding by three species of benthic fishes. J Exp Biol 145:303

    Google Scholar 

  • Webb PW (1998) Entrainment by river chub Nocomis micropogon and smallmouth bass Micropterus dolomieu on cylinders. J Exp Biol 201:2403–2412

    PubMed  Google Scholar 

  • Webb PW, Cotel AJ, Meadows LM (2009) Waves and eddies: effects on fish behavior and habitat distribution. In: Domenici (ed) Fish locomotion: an etho-ecological approach. Science Publishers, Enfield

    Google Scholar 

  • Weihs D (1973) Hydromechanics of fish schooling. Nature 241:290–291

    Article  Google Scholar 

  • Wu TY (1977) Introduction to scaling of aquatic animal locomotion. In: Pedley TJ (ed) Scale effects of animal locomotion. Academic Press, New York, pp 203–232

    Google Scholar 

  • Wu TY, Chwang AT (1975) Extraction of flow energy by fish and birds in a wavy stream. Plenum Press, New York, pp 687–702

    Google Scholar 

  • Zdravkovich MM (1997) Flow around circular cylinders : a comprehensive guide through flow phenomena, experiments, applications, mathematical models, and computer simulations. Oxford University Press, Oxford

    Google Scholar 

Download references

Acknowledgments

We would like to thank Arjan Palstra and Josep Planas for inviting us to be a part of this book. Funding was provided by NIH RO1 DC010809 to J.C.L. and NSF Career 0447427 for A.J.C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James C. Liao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Liao, J.C., Cotel, A. (2013). Effects of Turbulence on Fish Swimming in Aquaculture. In: Palstra, A., Planas, J. (eds) Swimming Physiology of Fish. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31049-2_5

Download citation

Publish with us

Policies and ethics