Skip to main content

Physiology of Swimming and Migration in Tunas

  • Chapter
  • First Online:
Swimming Physiology of Fish

Abstract

Tunas are well known for specialized anatomical and physiological features that correlate to their exceptionally active lifestyle and ability to migrate over long distances. Foremost are a high degree of body streamlining, a lunate tail fin with high aspect ratio, a relatively “stiff-body” swimming style, elevated core body temperature, medially and anteriorly located aerobic red muscle, a large heart, and a high metabolic rate. This chapter will discuss the state of knowledge of these properties and review the importance of the muscle and tendon anatomy, muscle activation patterns and contractile properties, and the effect of elevated temperature on muscle power output. We also present an assessment of tuna swimming performance based on laboratory and field measurements, and summarize current knowledge of tuna migration patterns. Finally, the use of tunas in aquaculture and its future potential is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguado-Gimènez F, Garcìa-Garcìa B (2005) Growth, food intake and feed conversion rates in captive Atlantic bluefin tuna (Thunnus thynnus Linnaeus, 1758) under fattening conditions. Aquacul Res 36:610–614

    Google Scholar 

  • Alexander RL (1995) Evidence of a countercurrent heat-exchanger in the ray, Mobula tarapacana (Chondrichthyes, Elasmobranchii, Batoidea, Myliobatiformes). J Zool 237:377–384

    Google Scholar 

  • Alexander RL (1996) Evidence of brain-warming in the mobulid rays, Mobula tarapacana and Manta birostris (Chondrichthyes: Elasmobranchii: Batoidea: Myliobatiformes). Zool J Linnean Soc 118:151–164

    Google Scholar 

  • Altringham JD, Block BA (1997) Why do tuna maintain elevated slow muscle temperatures? Power output of muscle isolated from endothermic and ectothermic fish. J Exp Biol 200:2617–2627

    PubMed  CAS  Google Scholar 

  • Altringham JD, Johnston IA (1990) Modelling muscle power output in a swimming fish. J Exp Biol 148:395–402

    Google Scholar 

  • Altringham JD, Shadwick RE (2001) Swimming and muscle function. In: Block BA, Stevens ED (eds) Tuna: physiology, ecology and evolution, fish physiology, vol 19. Academic Press, San Diego, pp 313–344

    Google Scholar 

  • Argue AW (ed) (1981) Report of the second skipjack survey and assessment programme workshop to review results from genetic analysis of skipjack blood samples south pacific commission, skipjack survey and assessment programme, technical report No 6, p 39

    Google Scholar 

  • Arrizabalaga H, Rodas VL, de Zárate VO, Costas E, González-Garcés (2002) A Study on the migrations and stock structure of albacore (Thunnus alalunga) from the atlantic ocean and the mediterranean sea based on conventional tag release-recapture experiences. Col Vol Sci Pap 54:1479–1494

    Google Scholar 

  • Arthur PG, West TG, Brill RW, Schulte PM, Hochachka PW (1992) Recovery metabolism of skipjack tuna (Katsuwonus-pelamis) white muscle Rapid and parallel changes in lactate and phosphocreatine after exercise. Can J Zool 70:1230–1239

    CAS  Google Scholar 

  • Bayliff WH, Holland KN (1986) Materials and methods for tagging tuna and billfishes, recovering the tags and handling the recapture data. FAO fisheries technical paper No 279, Rome, p 36

    Google Scholar 

  • Ben-Zvi M (2011) Katsuwonis pelamis: a case study of thunniform locomotion. MSc Thesis, University of British Columbia

    Google Scholar 

  • Bernal D, Sepulveda CA (2005) Evidence for temperature elevation in the aerobic swimming musculature of the common thresher shark Alopias vulpinus. Copeia: 146–151

    Google Scholar 

  • Bernal D, Dickson KA, Shadwick RE, Graham JB (2001) Analysis of the evolutionary convergence for high performance swimming in lamnid sharks and tunas. Comp Biolchem Physiol A Molec Integ Physiol 129:695–726

    CAS  Google Scholar 

  • Blake RW, Chatters LM, Domenici P (1995) Turning radius of yellowfin tuna (Thunnus albacares) in unsteady swimming manoeuvres. J Fish Biol 46:536–538

    Google Scholar 

  • Blank JM, Farwell CJ, Morrissette JM, Schallert RJ, Block BA (2007) Influence of swimming speed on metabolic rates of juvenile Pacific bluefin tuna and yellowfin tuna. Physiol Biochem Zool 80:167–177

    PubMed  Google Scholar 

  • Block BA (1986) Structure of the brain and eye heater tissue in marlins, sailfish, and spearfishes. J Morphol 190:169–189

    PubMed  CAS  Google Scholar 

  • Block BA (1991) Endothermy in fish: thermogenesis, ecology, and evolution In: Hochachka PW, Mommsen TP (eds), Biochem Mol Biol Fish, pp 269–311

    Google Scholar 

  • Block BA, Carey FG (1985) Warm brain and eye temperatures in sharks. J Comp Physiol B-Biochem Syst Environ Physiol 156:229–236

    CAS  Google Scholar 

  • Block BA, Finnerty JR (1994) Endothermy in fishes: a phylogenetic analysis of constraints, predispositions, and selection pressures. Env Biol Fish 40:283–302

    Google Scholar 

  • Block BA, Finnerty JR, Stewart AFR, Kidd J (1993) Evolution of endothermy in fish: Mapping physiological traits on a molecular phylogeny. Science 260:210–214

    PubMed  CAS  Google Scholar 

  • Block BA, Keen JE, Castillo B, Dewar H, Freund EV, Marcinek DJ, Brill RW, Farwell C (1997) Environmental preferences of yellowfin tuna (Thunnus albacares) at the northern extent of its range. Mar Biol 130:119–132

    Google Scholar 

  • Block BA, Dewar H, Blackwell SB, Williams TD, Prince ED, Farwell CJ, Boustany A, Teo SLH, Seitz A, Walli A, Fudge D (2001) Migratory movements, depth preferences, and thermal biology of atlantic bluefin tuna. Science 293:1310–1314

    PubMed  CAS  Google Scholar 

  • Brill RW (1987) On the standard metabolic rates of tropical tunas, including the effect of body size and acute temperature-change. Fish Bull 85:25–35

    Google Scholar 

  • Brill RW, Bushnell PG (1991a) Effects of open and closed system temperature changes on blood oxygen dissociation curves of skipjack tuna, Katsuwonus pelamis, and yellowfin tuna, Thunnus albacares. Can J Zool 69:1814–1821

    Google Scholar 

  • Brill RW, Bushnell PG (1991b) Metabolic and cardiac scope of high energy demand teleosts, the tunas. Can J Zool 69:2002–2009

    Google Scholar 

  • Brill RW, Bushnell PG (2001) The cardiovascular system of tunas. In: Block BA, Stevens ED (eds) Tuna: Physiology, ecology and evolution, fish physiology, vol 19. Academic Press, San Diego, pp 79–120

    Google Scholar 

  • Brill RW, Dizon AE (1979a) Red and white muscle fibre activity in swimming skipjack tuna, Katsuwonus pelamis (L). J Fish Biol 15:679–685

    Google Scholar 

  • Brill RW, Dizon AE (1979b) Effect of temperature on isotonic twitch of white muscle and predicted maximum swimming speeds of skipjack tuna, Katsuwonus pelamis. Environ Biol Fish 4:199–205

    Google Scholar 

  • Brill RW, Block BA, Boggs CH, Bigelow KA, Freund EV, Marcinek DJ (1999) Horizontal movements and depth distribution of large adult yellowfin tuna (Thunnus albacares) near the Hawaiian Islands, recorded using ultrasonic telemetry: implications for the physiological ecology of pelagic fishes. Mar Biol 133:395–408

    Google Scholar 

  • Brill RW, Bigelow KA, Musyl MK, Fritsches KA, Warrant EJ (2005) Bigeye tuna (Thunnus obesus) behavior and physiology and their relevance to stock assessments and fishery biology. ICCAT Col Vol Sci Pap 57:142–161

    Google Scholar 

  • Broadhead GC, Orange CJ (1960) Species and size relationships within schools of yellowfin and skipjack tuna as indicated by catches in the Eastern Tropical Pacific Ocean. Inter-Amer Trop Tuna Comm 4:447–492

    Google Scholar 

  • Bushnell PG, Jones DR (1994) Cardiovascular and respiratory physiology of tuna; adaptations for support of exceptionally high metabolic rates. Environ Biol Fish 40:303–318

    Google Scholar 

  • Carey FG, Gibson WH (1977) Reverse temperature dependence of tuna haemoglobin oxygenation. Biochem Biophys Res Commun 78:1376–1382

    PubMed  CAS  Google Scholar 

  • Carey FG, Lawson KD (1973) Temperature regulation in free-swimming bluefin tuna. Comp Biochem Physiol 44:375–392

    CAS  Google Scholar 

  • Carey FG, Scharold JV (1990) Movements of blue sharks (Prionace glauca) in depth and course. Mar Biol 106:329–342

    Google Scholar 

  • Carey FG, Teal JM, Kanwisher JW, Lawson KD, Beckett JS (1971) Warm-bodied fish. Amer Zool 11:137–145

    Google Scholar 

  • Carey FG, Teal JM, Kanwisher JW (1981) The visceral temperatures of mackerel sharks (Lamnidae). Physiol Zool 54:334–344

    Google Scholar 

  • Carey FG, Kanwisher JW, Stevens ED (1984) Bluefin tuna warm their viscera during digestion. J Exp Biol 109:1–20

    Google Scholar 

  • Childers J, Synder S, Kohin, S (2011). Migration and behavior of juvenile North Pacific albacore (Thunnus alalunga) Fish Oceanogr 20:157−173

    Google Scholar 

  • Clark TD, Seymour RS, Wells RMG, Frappell PB (2008a) Thermal effects on the blood respiratory properties of southern bluefin tuna, Thunnus maccoyii. Comp Biochem Physiol A: Mol Integr Physiol 150:239–246

    CAS  Google Scholar 

  • Clark TD, Taylor BD, Seymour RS, Ellis D, Buchanan J, Fitzgibbon QP, Frappell PB (2008b) Moving with the beat: heart rate and visceral temperature of free-swimming and feeding bluefin tuna. Proc R Soc B 275:2841–2850

    PubMed  CAS  Google Scholar 

  • Dagorn L, Bach P, Josse E (2000) Movement patterns of large bigeye tuna (Thunnus obesus) in the open ocean, determined using ultrasonic telemetry. Mar Biol 136:361–371

    Google Scholar 

  • Dewar H (1993) Studies of tropical tuna swimming performance: thermoregulation, swimming mechanics and energetic PhD thesis, University of California, San Diego

    Google Scholar 

  • Dewar H, Graham JB (1994a) Studies of tropical tuna swimming performance in a large water tunnel: I energetics. J Exp Biol 192:13–31

    PubMed  Google Scholar 

  • Dewar H, Graham JB (1994b) Studies of tropical tuna swimming performance in a large water tunnel: III kinematics. J Exp Biol 192:45–59

    PubMed  Google Scholar 

  • Dewar H, Graham JB, Brill RW (1994) Studies of tropical tuna swimming performance in a large water tunnel: II thermoregulation. J Exp Biol 192:33–44

    PubMed  Google Scholar 

  • Dickson KA (1995) Unique adaptations of the metabolic biochemistry of tunas and billfishes for life in the pelagic environment. Environ Biol Fish 42:65–97

    Google Scholar 

  • Donley JM, Dickson KA (2000) Swimming kinematics of juvenile kawakawa tuna (Euthynnus affinis) and chub mackerel (Scomber japonicus). J Exp Biol 203:3103–3116

    PubMed  CAS  Google Scholar 

  • Donley JM, Sepulveda CA, Konstantinidis P, Gemballa S, Shadwick RE (2004) Convergent evolution in mechanical design of lamnid sharks and tunas. Nature 429:61–65

    PubMed  CAS  Google Scholar 

  • Ellerby DJ, Altringham JD, Williams T, Block BA (2000) Slow muscle function of Pacific bonito (Sarda chiliensis) during steady swimming. J Exp Biol 203:2001–2013

    PubMed  CAS  Google Scholar 

  • Ellis R (2008) The bluefin in peril. Sci Amer 298:70–77

    Google Scholar 

  • Ely B, Viñas J, Bremer JRA, Black D, Lucas L, Covello K, Labrie AV, Thelen E (2005) Consequences of the historical demography on the global population structure of two highly migratory cosmopolitan marine fishes: the yellowfin tuna (Thunnus albacares) and the skipjack tuna (Katsuwonus pelamis). Evol Biol 5:19

    Google Scholar 

  • FAO (1994) World review of highly migratory species and straddling stocks. FAO fisheries technical paper No 337, Rome, p 70

    Google Scholar 

  • Farwell, CJ (2001) Tunas in captivity In: Block BA, Stevens ED (eds) Tuna: physiology, ecology, and evolution, Academic Press, pp 167–224

    Google Scholar 

  • Fierstine HL, Walters V (1968) Studies in locomotion and anatomy of scombroid fishes. Mem S Calif Acad Sci 6:1–31

    Google Scholar 

  • Fink BD, Bayliff WH (1970) Migrations of yellowfin and skipjack tuna in the eastern pacific ocean as determined by tagging experiments, 1952–1964. Inter-Am Trop Tuna Comm 15:1–227

    Google Scholar 

  • Fitzgibbon QP, Baudinette RV, Musgrove RJ, Seymour RS (2008) Routine metabolic rate of southern bluefin tuna (Thunnus maccoyii). Comp Biochem Physiol A Molec Integ Physiol 150:231–238

    CAS  Google Scholar 

  • Fournier DA, Sibert JR, Majkowski J, Hampton J (1990) MULTIFAN a likelihood-based method for estimating growth parameters and age composition from multiple length frequency data sets Illustrated using data for southern bluefin tuna (Thunnus maccoyii). Can J Fish Aquat Sci 47:301–317

    Google Scholar 

  • Fritsches KA, Brill RW, Warrant EJ (2005) Warm eyes provide superior vision in swordfishes. Curr Biol 15:55–58

    PubMed  CAS  Google Scholar 

  • Fromentin J-M, Powers JE (2005) Atlantic bluefin tuna: population dynamics, ecology, fisheries and management. Fish Fisher 6:281–298

    Google Scholar 

  • Fudge DS, Ballantyne JS, Stevens ED (1996) The effect of an in vivo temperature gradient on enzyme metabolism: biochemical adaptation in the visceral retia mirabilia of the bluefin tuna (Thunnus thynnus). Faseb J 10:2266–2266

    Google Scholar 

  • Fujioka K, Kawabe R, Hobday AJ, Takao T, Miyashita K, Sakai O, Itoh T (2010) Spatial and temporal variation in the distribution of juvenile southern bluefin tuna Thunnus maccoyii: implication for precise estimation of recruitment abundance indices. Fish Sci 76:403–410

    CAS  Google Scholar 

  • Gemballa S, Konstantinidis P (2005) Derived trunk morphology in a thunniform swimmer: the musculotendinous system of Euthynnus alletteratus. Comp Biochem Physiol A Mol Integ Physiol 141:S170–S171

    Google Scholar 

  • Gemballa S, Vogel F (2002) Spatial arrangement of white muscle fibers and myoseptal tendons in fishes. Comp Biochem Physiol 133A:1013–1037

    CAS  Google Scholar 

  • Gemballa S, Ebmeyer L, Hagen K, Hannich T, Hoja K, Rolf M, Treiber K, Vogel F, Weitbrecht G (2003) Evolutionary transformations of myoseptal tendons in gnathostomes. Proc R Soc B 270:1229–1235

    PubMed  Google Scholar 

  • Gillis GB (1998) Neuromuscular control of anguilliform locomotion: Patterns of red and white muscle activity during swimming in the American eel Anguilla rostrata. J Exp Biol 201:3245–3256

    PubMed  Google Scholar 

  • Gooding RM, Neill WH, Dizon AE (1981) Respiration rates and low-oxygen tolerance limits in skipjack tuna, Katsuwonus pelamis. Fish Bull 79:31–48

    Google Scholar 

  • Graham JB (1975) Heat exchange in the yellowfin tuna and skipjack tuna and the adaptive significance of elevated temperatures in scombrid fishes. Fish Bull 73:219–229

    Google Scholar 

  • Graham JB, Dickson KA (2000) The evolution of thunniform locomotion and heat conservation in scombrid fishes: new insights based on the morphology of Allothunnus fallai. Zool J Linn Soc 129:419–466

    Google Scholar 

  • Graham JB, Dickson KA (2001) Anatomical and physiological specializations for endothermy. In: Block BA, Stevens ED (eds) Tuna: physiology, ecology and evolution, fish physiology, vol 19. Academic Press, San Diego, pp 121–165

    Google Scholar 

  • Graham JB, Dickson KA (2004) Tuna comparative physiology. J Exp Biol 207:4015–4024

    PubMed  Google Scholar 

  • Graham JB, Laurs RM (1982) Metabolic rate of the albacore tuna Thunnus alalunga. Mar Biol 72:1–6

    Google Scholar 

  • Graham JB, Koehrn FJ, Dickson KA (1983) Distribution and relative proportions of red muscle in scombroid fishes: consequences of body size and relationships to locomotion and endothermy. Can J Zool 61:2087–2096

    Google Scholar 

  • Graham JB, Lowell RW, Lai NC, Laurs RM (1989) O2 tension, swimming velocity and thermal effects on the metabolic rate of the pacific albacore, Thunnus alalunga. Exp Biol 48:89–94

    PubMed  CAS  Google Scholar 

  • Graves JE, Ferris SD, Dizon AE (1984) Close genetic similarity of Atlantic and Pacific skipjack tuna (Katsuwonus pelamis) demonstrated with restricted endonuclease analysis of mitochondrial DNA. Mar Biol 75:315–319

    Google Scholar 

  • Gunn JB, Block BA (2001) Advances in acoustic, archival, and satellite tagging of tunas. In: Block BA, Stevens ED (eds) Tuna: physiology, ecology and evolution, fish physiology, vol 19. Academic Press, San Diego, pp 167–224

    Google Scholar 

  • Hertel H (1963) Structure-form-movement, Reinhold NY

    Google Scholar 

  • Hochachka PW, Hulbert WC, Guppy M (1978) The tuna power plant and furnace In Sharp G, Dizon A (eds) Physiological Ecology of Tuna. Academic Press, New York, pp 153–174

    Google Scholar 

  • Holland KN, Sibert JR (1994) Physiological thermoregulation in bigeye tuna, Thunnus obesus. Environ Biol Fish 40:319–327

    Google Scholar 

  • Holland KN, Brill RW, Chang RKC (1990) Horizontal and vertical movements of yellowfin and bigeye tuna associated with fish aggregating devices. Fish Bull 88:493–507

    Google Scholar 

  • Holland KN, Brill RW, Chang RKC, Sibert JR, Fournier DA (1992) Physiological and behavioral thermoregulation in Bigeye tuna (Thunnus obesus). Nature 358:410–412

    PubMed  CAS  Google Scholar 

  • Hoyle S, Langley A, Hampton J (2008) Stock assessment of albacore tuna in the south pacific ocean. WCPFC SC-4, pp 126

    Google Scholar 

  • Hulbert WC, Guppy M, Murphy B, Hochachka PW (1979) Metabolic sources of heat and power in tuna muscles: I Muscle fine structure. J Exp Biol 82:289–301

    PubMed  CAS  Google Scholar 

  • Hunter JR (1986) The dynamics of tuna movements: an evaluation of past and future research. FAO fish tech paper No 277, Rome, pp 78

    Google Scholar 

  • Hurry GD, Hayashi M, Maguire JJ (2008) Report of the independent review: international commission for the conservation of atlantic tunas ICCAT PLE-106, pp 105

    Google Scholar 

  • ICCAT (2001) Report for biennial period, 2000-01: Part II (Vol. 2). International Commission for the Conservation of Atlantic Tunas. Madrid, Spain. 207 pp.

    Google Scholar 

  • Ikeda-Saito M, Yonetani T, Gibson QH (1983) Oxygen equilibrium studies on hemoglobin from the bluefin tuna (Thunnus thynnus). J Mol Biol 168:673–686

    PubMed  CAS  Google Scholar 

  • Johnson TP, Johnston IA (1991) Power output of fish muscle fibres performing oscillatory work: effects of acute and seasonal temperature change. J Exp Biol 157:409–423

    Google Scholar 

  • Jones DR, Brill RW, Mense DC (1986) The influence of blood gas properties on gas tensions and pH of ventral and dorsal aortic blood in free-swimming tuna, Euthynnus affinis. J Exp Biol 120:201–213

    Google Scholar 

  • Katz SL, Syme DA, Shadwick RE (2001) Enhanced power in yellowfin tuna. Nature 410:770–771

    PubMed  CAS  Google Scholar 

  • Knower T (1998) Biomechanics of thunniform swimming. Ph.D. Thesis University of California, San Diego

    Google Scholar 

  • Knower T, Shadwick RE, Katz SL, Graham JB, Wardle CS (1999) Red muscle activation patterns in yellowfin (Thunnus albacares) and skipjack (Katsuwonus pelamis) tunas during steady swimming. J Exp Biol 202:2127–2138

    PubMed  Google Scholar 

  • Korsmeyer KE, Dewar, H (2001) Tuna metabolism and energetics. In: Block BA, Stevens ED (eds) Tuna: physiology, ecology and evolution. Fish Physiology, Academic Press, San Diego, pp 35-78

    Google Scholar 

  • Korsmeyer KE, Dewar H, Lai NC, Graham JB (1996) The aerobic capacity of tunas: adaptation for multiple metabolic demands. Comp Biochem Physiol A-Physiol 113:17–24

    Google Scholar 

  • Korsmeyer KE, Lai NC, Shadwick RE, Graham JB (1997) Heart rate and stroke volume contributions to cardiac output in swimming yellowfin tuna: response to exercise and temperature. J Exp Biol 200:1975–1986

    PubMed  CAS  Google Scholar 

  • Laurs RM, Lynn RJ (1977) Seasonal migration of north pacific albacore, Thunnus alalunga, into North American coastal waters: distribution, relative abundance, and association with transition zone waters. Fish Bull 75:795–822

    Google Scholar 

  • Lighthill MJ (1970) Aquatic animal propulsion of high hydromechanical efficiency. J Fluid Mech 44:265–301

    Google Scholar 

  • Linthicum DS, Carey FG (1972) Regulation of brain and eye temperatures by bluefin tuna. Comp Biochem Physiol 43:425–433

    CAS  Google Scholar 

  • Lutcavage ME, Brill RW, Goldstein JL, Skomal GB, Chase BC, Tutein J (2000) Movements and behavior of adult North Atlantic bluefin tuna (Thunnus thynnus) in the Northwest Atlantic determined using ultrasonic telemetry. Mar Biol 137:347–358

    Google Scholar 

  • Magnuson JJ (1970) Hydrostatic equilibrium of Euthynnus afinis, a pelagic teleost without a gas bladder. Copeia 1970:56–85

    Google Scholar 

  • Magnuson JJ (1978) Locomotion by scombroid fishes: hydromechanics, morphology and behavior. In: Hoar WS, Randall DJ (eds) Fish physiology, vol 7. Academic Press, New York, pp 239–313

    Google Scholar 

  • Malte H, Larsen C, Musyl M, Brill R (2007) Differential heating and cooling rates in bigeye tuna (Thunnus obesus Lowe): a model of non-steady state heat exchange. J Exp Biol 210:2618–2626

    PubMed  Google Scholar 

  • Marcinek DJ, Blackwell SB, Dewar H, Freund EV, Farwell C, Dau D, Seitz AC, Block BA (2001) Depth and muscle temperature of Pacific bluefin tuna examined with acoustic and pop-up satellite archival tags. Mar Biol 138:869–885

    Google Scholar 

  • Mather FJ (1960) Recaptures of tuna, marlin, and sailfish tagged in the Western Atlantic. Copeia 2:149–151

    Google Scholar 

  • Miyake PM, De la Serna JM, Di Natale A, Farrugia A, Katavics I, Miyabe N, Ticina V (2003) General review of bluefin tuna farming in the Mediterranean area. ICCAT Col Vol Sci Pap 55:114–124

    Google Scholar 

  • Mourente G, Tocher DR (2009) Tuna nutrition and feeds: current status and future perspectives. Rev Fish Sci 17:373–390

    CAS  Google Scholar 

  • Murray T (1994) A review of the biology and fisheries for albacore, Thunnus alalunga, in the South Pacific Ocean. In: Shomura RS, Majkowski J,Langi S (eds). Interactions of Pacific tuna fisheries. FAO Fish Tech Pap No 336/2. pp 188–206

    Google Scholar 

  • Musyl MK, Brill RW, Boggs CH, Curran DS, Kazama TK, Seki MP (2003) Vertical movements of bigeye tuna (Thunnus obesus) associated with islands, buoys, and seamounts near the main Hawaiian Islands from archival tagging data. Fish Oceanog 12:152–169

    Google Scholar 

  • Nauen JC, Lauder GV (2000) Locomotion in scombrid fishes: kinematics of finlets in the chub mackerel. J Exp Biol 203:2247–2259

    PubMed  CAS  Google Scholar 

  • Ottolenghi F (2008) Capture-based aquaculture of bluefin tuna. In: Lovatelli A and P F Holthus (eds) Capture-based aquaculture. Global review FAO fisheries technical paper No 508, Rome, p 298

    Google Scholar 

  • Perry SF, Daxboeck C, Emmett B, Hochachka PW, Brill RW (1985) Effects of exhausting exercise on acid-base regulation in skipjack tuna (Katsuwonus pelamis) blood. Physiol Zool 58:421–429

    Google Scholar 

  • Proctor CH, Thresher RE, Gunn JS, Mills DJ, Harrowfield IR, Sie SH (1995) Stock structure of the southern bluefin tuna Thunnus maccoyii: an investigation based on probe microanalysis of otolith composition. Mar Biol 122:511–526

    CAS  Google Scholar 

  • Richards WJ (1976) Spawning of bluefin tuna (Thunnus thynnus) in the Atlantic Ocean and adjacent seas. ICCAT Col Vol Sci Pap 5:267–278

    Google Scholar 

  • Rooker JR, Secor DH, De Metrio G, Schloesser R, Block BA, Neilson JD (2008) Natal homing and connectivity in Atlantic Bluefin tuna populations. Science 322:742–744

    PubMed  CAS  Google Scholar 

  • Runcie RM, Dewar H, Hawn DR, Frank LR, Dickson KA (2009) Evidence for cranial endothermy in the opah (Lampris guttatus). J Exp Biol 212:461–470

    PubMed  Google Scholar 

  • Sawada Y, Okada T, Miyashita S, Murata O, Kumai H (2005) Completion of the Pacific bluefin tuna Thunnus orientalis (Temminck et Schlegel) life cycle. Aquac Res 36:413–421

    Google Scholar 

  • Schaefer KM (2001) Assessment of skipjack tuna (Katsuwanus pelamis) spawning activity in the eastern Pacific Ocean. Fish Bull 99:343–350

    Google Scholar 

  • Schaefer KM, Fuller DW (2010) Vertical movements, behavior, and habitat of bigeye tuna (Thunnus obesus) in the equatorial eastern Pacific Ocean ascertained from archival tag data. Mar Biol 157:2625–2642

    Google Scholar 

  • Schaefer KM, Fuller DW, Block BA (2007) Movements, behavior, and habitat utilization of yellowfin tuna (Thunnus albacares) in the northeastern Pacific Ocean, ascertained through archival tag data. Mar Biol 152:503–525

    Google Scholar 

  • Schaefer KM, Fuller DW, Block BA (2009a) Vertical movements and habitat utilization of skipjack (Katsuwonus pelamis), yellowfin (Thunnus albacares), and bigeye (Thunnus obesus) tunas in the equatorial Eastern Pacific Ocean, ascertained through archival tag data. Rev: Meth Technol Fish Biol Fisheries 9:121–144

    Google Scholar 

  • Schaefer KM, Fuller DW Block BA (2009b) Vertical movements and habitat utilization of skipjack (Katsuwonus pelamis), yellowfin (Thunnus albacares), and bigeye (Thunnus obesus) tunas in the equatorial eastern Pacific Ocean, ascertained through archival tag data. In: Nielsen JL, Arrizabalaga H, Fragoso N, Hobday A, Lutcavage M, Sibert J (eds) Tagging and tracking of marine animals with electronic devices, London, pp 121–144

    Google Scholar 

  • Schaefer KM, Fuller DW, Block BA (2011) Movements, behavior, and habitat utilization of yellowfin tuna (Thunnus albacares) in the Pacific Ocean off Baja California, Mexico, determined from archival tag data analyses, including unscented Kalman filtering. Fish Res 112:22–37

    Google Scholar 

  • Sepulveda C, Dickson KA (2000) Maximum sustainable speeds and cost of swimming in juvenile kawakawa tuna, Euthynnus affinis, and chub mackerel, Scomber japonicus. J Exp Biol 203:3089–3101

    PubMed  CAS  Google Scholar 

  • Sepulveda CA, Dickson KA, Graham JB (2003) Swimming performance studies on the eastern Pacific bonito Sarda chiliensis, a close relative of the tunas (family Scombridae) I. Energetics. J Exp Biol 206:2739–2748

    PubMed  CAS  Google Scholar 

  • Shadwick RE (2005) How tunas and lamnid sharks swim: an evolutionary convergence. Am Sci 93:524–531

    Google Scholar 

  • Shadwick RE, Gemballa S (2006) Structure, kinematics, and muscle dynamics in undulatory swimming. In: Shadwick RE, Lauder GV (eds) Fish biomechanics. Elsevier Academic Press, San Diego, pp 241–280

    Google Scholar 

  • Shadwick RE, Syme DA (2008) Thunniform swimming: muscle dynamics and mechanical power production of aerobic fibres in yellowfin tuna (Thunnus albacares). J Exp Biol 211:1603–1611

    PubMed  Google Scholar 

  • Shadwick RE, Katz SL, Korsmeyer KE, Knower T, Covell JW (1999) Muscle dynamics in skipjack tuna: timing of red muscle shortening in relation to activation and body curvature during steady swimming. J Exp Biol 202:2139–2150

    PubMed  Google Scholar 

  • Shadwick RE, Rapoport HS, Fenger JM (2002) Structure and function of tuna tail tendons. Comp Biochem Physiol A 133:1109–1125

    Google Scholar 

  • Shiao J-C, Yui T-F, Høie H, Ninnemann U, Chang S-K (2009) Otolith O and C stable isotope compositions of Southern bluefin tuna Thunnus maccoyii (Pisces: Scombridae) as possible environmental and physiological indicators. Zool Stud 48:71–82

    Google Scholar 

  • Shukei M, Shigeru M, Hiroshi Y, Hidemi K (2008) Status of bluefin tuna farming, broodstock management, breeding and fingerling production in Japan. Rev Fish Sci 16:385–390

    Google Scholar 

  • Steinfeld H, Gerber P, Wassenaar T, Castel V, Rosales M, de Haan C (2006) Livestock’s long shadow: environmental issues and options. Food and Agriculture Organization of the United Nations, Rome, p 414

    Google Scholar 

  • Stevens ED, Fry FEJ (1971) Brain and muscle temperatures in ocean caught and captive skipjack tuna. Comp Biochem Physiol 38:203–211

    Google Scholar 

  • Stevens ED, Mcleese JM (1984) Why bluefin tuna have warm tummies—temperature effect on trypsin and chymotrypsin. Am J Physiol 246:R487–R494

    PubMed  CAS  Google Scholar 

  • Sund PN, Blackburn M, Williams F (1981) Tunas and their environment in thePacific Ocean: a review. Oceanog Mar Biol Ann Rev 19:443–512

    Google Scholar 

  • Swank DM, Rome LC (2001) The influence of thermal acclimation on power production during swimming II Mechanics of scup red muscle under in vivo conditions. J Exp Biol 204:419–430

    PubMed  CAS  Google Scholar 

  • Sylvia PC, Belle S, Smart A (2003) Current status and future prospective of bluefin tuna(Thunnus thynnus orientalis) farming in Mexico and the west coast of the United States. Cahiers Options Méditerranéennes 60:197–200

    Google Scholar 

  • Syme DA (2006) Functional properties of skeletal muscle. In: Shadwick RE, Lauder GV (eds) Fish biomechanics. Elsevier Academic Press, San Diego, pp 179–240

    Google Scholar 

  • Syme DA, Shadwick RE (2011) Red muscle function in stiff-bodied swimmers: there and almost back again. Phil Trans R Soc B 366:1507–1515

    PubMed  Google Scholar 

  • Syme DA, Shadwick RE (2002) Effects of longitudinal body position and swimming speed on mechanical power of deep red muscle from skipjack tuna (Katsuwonus pelamis). J Exp Biol 205:189–200

    PubMed  Google Scholar 

  • Tičina V, Katavić I, Grubišić L (2007) Growth indices of small northern bluefin tuna (Thunnus thynnus, L) in growth-out rearing cages. Aquac 269:538–543

    Google Scholar 

  • Tsikliras AC, Tsalkou E, Pauly D, Stergiou KI (2010) Trends in trophic level of farmed fish in Mediterranean countries In: Rapport du 39e Congrès de la commission internationale pour l’exploration scientifique de la Mer Méditerranée, p 684

    Google Scholar 

  • Tubbesing VA, Block BA (2000) Orbital rete and red muscle vein anatomy indicate a high degree of endothermy in the brain and eye of the salmon shark. Acta Zool 81:49–56

    Google Scholar 

  • Tzoumas A, Ramfos A, De Metrio G, Corriero A, Spinos E, Vavassis C, Katsellis G (2010) Weight growth of Atlantic bluefin tuna (Thunnus thynnus, L 1758) as a result of a 6–7 months fattening process in the central Mediterranean. ICCAT Col Vol Sci Pap 65:787–800

    Google Scholar 

  • Videler JJ (1993) Fish swimming. Chapman and Hall, London

    Google Scholar 

  • Volpe JP (2005) Dollars without Sense: the bait for big-money tuna ranching around the world. Bioscience 55:301–302

    Google Scholar 

  • Walters V, Fierstine HL (1964) Measurements of swimming speeds of yellowfin tuna and wahoo. Nature 202:203–209

    Google Scholar 

  • Wardle CS, Videler JJ, Arimoto T, Franco JM, He P (1989) The muscle twitch and the maximum swimming speed of giant bluefin tuna, Thunnus thynnus. J Fish Biol 35:29–137

    Google Scholar 

  • Weihs D (1973) Optimal fish cruising speed. Nature 245:48–50

    Google Scholar 

  • Weihs D (1977) Effects of size on sustained swimming speeds of aquatic organisms. In: Pedley TJ (ed) Scale effects in animal locomotion, Academic Press, London, pp 333–338

    Google Scholar 

  • Weng KC, Stokesbury MJW, Boustany AM, Seitz AC, Two SLH, Miller SK, Block BA (2009) Habitat and behaviour of yellowfin tuna Thunnus albacares in the Gulf of Mexico determined usingpop-up satellite archival tags. J Fish Biol 74:1434–1449

    PubMed  CAS  Google Scholar 

  • Westneat MW, Wainwright SA (2001) Mechanical design for swimming; muscle, tendon and bone. In: Block BA, Stevens ED (eds) Tuna: physiology, ecology and evolution, fish physiology, vol 19. Academic Press, San Diego, pp 272–313

    Google Scholar 

  • Westneat MW, Hoese W, Pell CA, Wainwright SA (1993) The horizontal septum: mechanisms of force transfer in locomotion of scombrid fishes (Scombridae, Perciformes). J Morph 217:183–204

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert E. Shadwick .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Shadwick, R.E., Schiller, L.L., Fudge, D.S. (2013). Physiology of Swimming and Migration in Tunas. In: Palstra, A., Planas, J. (eds) Swimming Physiology of Fish. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31049-2_3

Download citation

Publish with us

Policies and ethics