Skip to main content

Transcriptomic and Proteomic Response of Skeletal Muscle to Swimming-Induced Exercise in Fish

  • Chapter
  • First Online:

Abstract

The “Omics” revolution has brought along the possibility to dissect complex physiological processes, such as exercise, at the gene (genomics), mRNA (transcriptomics), protein (proteomics), metabolite (metabolomics), and other levels with unprecedented detail. To date, a few studies in mammals, including humans, have approached this issue by investigating the effects of exercise on the transcriptome as well as on the proteome of skeletal muscle. In fish, however, despite the successful development and application of transcriptomic and proteomic approaches to study various physiological and pathological conditions over the last decade, no information is available on the application of transcriptomic or proteomic techniques to the study of the molecular effects of swimming-induced activity on skeletal muscle. Therefore, the aim of this chapter is to review recent data on the transcriptomic and proteomic response of white and red skeletal muscle to sustained swimming in the rainbow trout (Oncorhynchus mykiss) and the gilthead seabream (Sparus aurata), two economically important species.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Anttila K, Jarvilehto M, Manttari S (2006) Effects of different training protocols on Ca2+ handling and oxidative capacity in skeletal muscle of Atlantic salmon (Salmo salar L.). J Exp Biol 209:2971–2978

    Article  PubMed  CAS  Google Scholar 

  • Basaran F, Ozbilgin H, Ozbilgin YD (2007) Comparison of the swimming performance of farmed and wild gilthead sea bream, Sparus aurata. Aquacult Res 38:452–456

    Article  Google Scholar 

  • Berchtold MW, Brinkmeier H, Müntener M (2000) Calcium ion in skeletal muscle: its crucial role for muscle function, plasticity, and disease. Physiol Rev 80:1215–1265

    PubMed  CAS  Google Scholar 

  • Bonifati V, Oostra BA, Heutink P (2004) Linking DJ-1 to neurodegeneration offers novel insights for understanding the pathogenesis of Parkinson’s disease. J Mol Med 82:163–174

    Article  PubMed  CAS  Google Scholar 

  • Brownridge P, de Mello LV, Peters M, McLean L, Claydon A, Cossins AR, Whitfield PD, Young IS (2009) Regional variation in parvalbumin isoform expression correlates with muscle performance in common carp (Cyprinus carpio). J Exp Biol 212:184–193

    Article  PubMed  CAS  Google Scholar 

  • Burniston JG, Hoffman EP (2011) Proteomic responses of skeletal and cardiac muscle to exercise. Expert Rev Proteomics 8:361–377

    Article  PubMed  Google Scholar 

  • Castro V, Grisdale-Helland B, Helland SJ et al (2011) Aerobic training stimulates growth and promotes disease resistance in Atlantic salmon (Salmo salar). Comp Biochem Physiol 160:278–290

    Article  CAS  Google Scholar 

  • Coughlin DJ (2002) Aerobic muscle function during steady swimming in fish. Fish Fisher 3:63–78

    Article  Google Scholar 

  • Cowling BS, McGrath MJ, Nguyen MA, Cottle DL, Kee AJ, Brown S, Schessl J, Zou Y, Joya J, Bönnemann CG, Hardeman EC, Mitchell CA (2008) Identification of FHL1 as a regulator of skeletal muscle mass: implications for human myopathy. J Cell Biol 183:1033–1048

    Article  PubMed  CAS  Google Scholar 

  • Choudhury M, Yamada S, Komatsu M, Kishimura H, Ando S (2009) Homologue of mammalian apolipoprotein A-II in non-mammalian vertebrates. Acta Biochim Biophys Sinica 41:370–378

    Article  CAS  Google Scholar 

  • Clark KA, McElhinny AS, Meckerle MC, Gregorio CC (2002) Striated muscle cytoarchitecture. Annu Rev Cell Dev Biol 18:637–706

    Article  PubMed  CAS  Google Scholar 

  • Davie PS, Wells RMG, Tetens V (1986) Effects of sustained swimming on rainbow-trout muscle structure, blood-oxygen transport, and lactate-dehydrogenase isozymes—evidence for increased aerobic capacity of white muscle. J Exp Zool 237:159–171

    Article  PubMed  CAS  Google Scholar 

  • Davison W (1997) The effects of exercise training on teleost fish, a review of recent literature. Comp Biochem Physiol 117A:67–75

    Article  CAS  Google Scholar 

  • Felip O, Ibarz A, Fernández-Borràs J, Beltrán M, Martín-Pérez M, Planas JV, Blasco J (2012) Tracing metabolic routes of dietary carbohydrate and protein in rainbow trout using stable isotopes (13C-starch and 15N-protein): effects of gelatinization of starches and sustained swimming. Br J Nutr 107:834–844

    Article  PubMed  CAS  Google Scholar 

  • Forné I, Abian J, Cerdà J (2010) Fish proteome analysis: model organisms and non-sequenced species. Proteomics 10:858–872

    Article  PubMed  Google Scholar 

  • Gunst SJ, Zhang W (2008) Actin cytoskeletal dynamics in smooth muscle: a new paradigm for the regulation of smooth muscle contraction. Am J Physiol Cell Physiol 295:C576–C587

    Article  PubMed  CAS  Google Scholar 

  • Hunt TK, Aslam R, Hussain Z, Beckert S (2008) Lactate, with oxygen, incites angiogenesis. Adv Exp Med Biol 614:73–80

    Article  PubMed  CAS  Google Scholar 

  • Hwang I (2004) Proteomics approach in meat science: a model study for hunter L* value and drip loss. Food Sci Biotechnol 13:208–214

    CAS  Google Scholar 

  • Ibarz A, Felip O, Fernandez-Borras J, Martin-Perez M, Blasco J, Torrella JR (2011) Sustained swimming improves muscle growth and cellularity in gilthead sea bream. J Comp Physiol B Biochem Syst Environ Physiol 181:209–217

    Article  Google Scholar 

  • Johnston IA, Moon TW (1980) Exercise training in skeletal-muscle of brook trout (Salvelinus fontinalis). J Exp Biol 87:177–194

    PubMed  CAS  Google Scholar 

  • Johnston IA, Moon TW (1981) Fine-structure and metabolism of multiply innervated fast muscle-fibers in teleost fish. Cell Tissue Res 219:93–109

    Article  PubMed  CAS  Google Scholar 

  • Johnston IA (1999) Muscle development and growth: potential implications for flesh quality in fish. Aquaculture 177:99–115

    Article  Google Scholar 

  • Koskinen H, Pehkonen P, Vehnioinen E, Krasnov A, Rexroad C, Afanasyev S, Molsa H, Oikari A (2004) Response of rainbow trout transcriptome to model chemical contaminants. Biochem Biophys Res Commun 320:745–753

    Article  PubMed  CAS  Google Scholar 

  • Krasnov A, Koskinen H, Pehkonen P, Rexroad CE, Afanasyev S, Molsa H (2005) Gene expression in the brain and kidney of rainbow trout in response to handling stress. BMC Genomics 6:3

    Article  PubMed  Google Scholar 

  • Kuss P, Villavicencio-Lorini P, Witte F, Klose J, Albrecht AN, Seemann P, Hecht J, Mundlos S (2009) Mutant Hoxd13 induces extra digits in a mouse model of synpolydactyly directly and by decreasing retinoic acid synthesis. J Clin Invest 119:146–156

    PubMed  CAS  Google Scholar 

  • Limon-Pacheco J, Gonsebatt ME (2009) The role of antioxidants and antioxidant-related enzymes in protective responses to environmentally induced oxidative stress. Mutat Res Genet Toxicol Environ Mutag 674:137–147

    Article  CAS  Google Scholar 

  • Magnoni L, Weber JM (2007) Endurance swimming activates trout lipoprotein lipase: plasma lipids as a fuel for muscle. J Exp Biol 210:4016–4023

    Article  PubMed  CAS  Google Scholar 

  • Mahdi F, Shariat-Madar Z, Todd R, Figueroa C, Schmaier A (2001) Expression and colocalization of cytokeratin 1 and urokinase plasminogen activator receptor on endothelial cells. Blood 97:2342–2350

    Article  PubMed  CAS  Google Scholar 

  • Martherus RSRM, Sluiter W, Timmer EDJ, VanHerle SJV, Smeets HJM, Ayoubi TAY (2010) Functional annotation of heart enriched mitochondrial genes GBAS and CHCHD10 through guilt by association. Biochem Biophys Res Commun 402:203–208

    Article  PubMed  CAS  Google Scholar 

  • Martin J, St-Pierre MV, Dufour J (2011) Hit proteins, mitochondria and cancer. Biochim Biophys Acta Bioenerg 1807:626–632

    Article  CAS  Google Scholar 

  • Martin-Perez M, Fernandez-Borras J, Ibarz A, Millan-Cubillo A, Felip O, de Oliveira E, Blasco J (2012) New insights into fish swimming: a proteomic and isotopic approach in gilthead sea bream. J Proteome Res. doi:10.1021/pr3002832

  • McLean L, Young IS, Doherty MK, Robertson DHL, Cossins AR, Gracey AY, Beynon RJ, Whitfield PD (2007) Global cooling: cold acclimation and the expression of soluble proteins in carp skeletal muscle. Proteomics 7:2667–2681

    Article  PubMed  CAS  Google Scholar 

  • Morzel M, Chambon C, Lefevre F, Paboeuf G, Laville E (2006) Modifications of trout (Oncorhynchus mykiss) muscle proteins by preslaughter activity. J Agric Food Chem 54:2997–3001

    Article  PubMed  CAS  Google Scholar 

  • Mourente G, Díaz-Salvago E, Bell JG, Tocher DR (2002) Increased activities of hepatic antioxidant defence enzymes in juvenile gilthead sea bream (Sparus aurata L.) fed dietary oxidised oil: attenuation by dietary vitamin E. Aquaculture 214:343–361

    Article  CAS  Google Scholar 

  • Moyes CD, West TG (1995) Exercise metabolism of fish. In: Hochachka PW, Mommsen TP (eds) Metabolic biochemistry, vol 4., Biochemistry and molecular biology of fishesElsevier Science, Amsterdam, pp 368–392

    Google Scholar 

  • Ozawa E (1989) Transferrin as a muscle trophic factor. Rev Physiol Biochem Pharmacol 113:89–141

    Article  PubMed  CAS  Google Scholar 

  • Palstra AP, Planas JV (2011) Fish under exercise. Fish Physiol Biochem 37:259–272

    Article  PubMed  CAS  Google Scholar 

  • Palstra AP, Crespo D, van den Thillart GEEJM, Planas JV (2010) Saving energy to fuel exercise: swimming suppresses oocyte development and down-regulates ovarian transcriptomic response of rainbow trout Oncorhynchus mykiss. Am J Physiol Regul Integr Comp Physiol 299:R486–R499

    Article  PubMed  CAS  Google Scholar 

  • Pedersen BK (2011) Muscles and their myokines. J Exp Biol 214:337–346

    Article  PubMed  CAS  Google Scholar 

  • Perez-Sanchez J, Bermejo-Nogales A, Alvar Calduch-Giner J, Kaushik S, Sitja-Bobadilla A (2011) Molecular characterization and expression analysis of six peroxiredoxin paralogous genes in gilthead sea bream (Sparus aurata): insights from fish exposed to dietary, pathogen and confinement stressors. Fish Shellfish Immunol 31:294–302

    Article  PubMed  CAS  Google Scholar 

  • Rescan P-Y, Montfort J, Ralliere C, Le Cam A, Esquerre D, Hugot K (2007) Dynamic gene expression in fish muscle during recovery growth induced by a fasting-refeeding schedule. BMC Genomics 8:438

    Article  PubMed  Google Scholar 

  • Richards JG, Mercado AJ, Clayton CA, Heigenhauser GJF, Wood CM (2002) Substrate utilization during graded aerobic exercise in rainbow trout. J Exp Biol 205:2067–2077

    PubMed  CAS  Google Scholar 

  • Salem M, Nath J, Rexroad CE, Killefer J, Yao J (2005) Identification and molecular characterization of the rainbow trout calpains (Capn1 and Capn2): their expression in muscle wasting during starvation. Comp Biochem Physiol B Biochem Mol Biol 140:63–71

    Article  PubMed  Google Scholar 

  • Sayd T, Morzel M, Chambon C, Franck M, Figwer P, Larzul C, Le Roy P, Monin G, Cherel P, Laville E (2006) Proteome analysis of the sarcoplasmic fraction of pig semimembranosus muscle: implications on meat color development. J Agric Food Chem 54:2732–2737

    Article  PubMed  CAS  Google Scholar 

  • Schlabach MR, Bates GW (1975) Synergistic binding of anions and Fe3+ by transferrin—implications for interlocking sites hypothesis. J Biol Chem 250:2182–2188

    PubMed  CAS  Google Scholar 

  • Schoenauer R, Bertoncini P, Machaidze G, Aebi U, Perriard J, Hegner M, Agarkova I (2005) Myomesin is a molecular spring with adaptable elasticity. J Mol Biol 349:367–379

    Article  PubMed  CAS  Google Scholar 

  • Sha Z, Yu P, Takano T, Liu H, Terhune J, Liu Z (2008) The warm temperature acclimation protein Wap65 as an immune response gene: its duplicates are differentially regulated by temperature and bacterial infections. Mol Immunol 45:1458–1469

    Article  PubMed  CAS  Google Scholar 

  • Shinbo Y, Niki T, Taira T, Ooe H, Takahashi-Niki K, Maita C, Seino C, Iguchi-Ariga SMM, Ariga H (2006) Proper SUMO-1 conjugation is essential to DJ-1 to exert its full activities. Cell Death Differ 13:96–108

    Article  PubMed  CAS  Google Scholar 

  • Shisheva A, Sudhof TC, Czech MP (1994) Cloning, characterization, and expression of a novel GDP dissociation inhibitor isoform from skeletal-muscle. Mol Cell Biol 14:3459–3468

    PubMed  CAS  Google Scholar 

  • Shtifman A, Zhong N, Lopez JR, Shen J, Xu J (2011) Altered Ca2+ homeostasis in the skeletal muscle of DJ-1 null mice. Neurobiol Aging 32:125–132

    Article  PubMed  CAS  Google Scholar 

  • Siriett V, Nicholas G, Berry C, Watson T, Hennebry A, Thomas M, Ling N, Sharma M, Kambadur R (2006) Myostatin negatively regulates the expression of the steroid receptor co-factor ARA70. J Cell Physiol 206:25–263

    Article  Google Scholar 

  • Tang WK, Chan CB, Cheng CHK, Fong WP (2005) Seabream antiquitin: molecular cloning, tissue distribution, subcellular localization and functional expression. FEBS Lett 579:3759–3764

    Article  PubMed  CAS  Google Scholar 

  • Timmons JA, Larsson O, Jansson E, Fischer H, Gustafsson T, Greenhaff PL, Ridden J, Rachman J, Peyrard-Janvid M, Wahlestedt C, Sundberg CJ (2005) Human muscle gene expression responses to endurance training provide a novel perspective on Duchenne muscular dystrophy. FASEB J 19:750–760

    Article  PubMed  CAS  Google Scholar 

  • Totland GK, Kryvi H, Jødestøl KA, Christiansen EN, Tangerås A, Slinde E (1987) Growth and composition of the swimming muscle of adult Atlantic salmon (Salmo salar L.) during long-term sustained swimming. Aquaculture 66:299–313

    Article  Google Scholar 

  • Videler JJ (1993) Fish swimming. Chapman & Hall, London

    Book  Google Scholar 

  • Werner T (2010) Next generation sequencing in functional genomics. Brief Bioinform 5:499–511

    Article  Google Scholar 

  • Wekell MM, Brown GW Jr (1973) Ornithine aminotransferase of fishes. Comp Biochem Physiol B 46:779–795

    Article  PubMed  CAS  Google Scholar 

  • Wiendl H, Hohlfeld R, Kieseir BC (2005) Immunobiology of muscle: advances in understanding an immunological microenvironment. Trends Immunol 26:373–380

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi W, Fujimoto E, Higuchi M, Tabata I (2010) A DIGE proteomic analysis for high-intensity exercise-trained rat skeletal muscle. J Biochem 148:327–333

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The work from our laboratories described in this chapter was supported by grants from the Ministerio de Ciencia e Innovación (MICINN), Spain, to J.V.P. (CSD2007-0002 and AGL2009-07006) and to J.B. and J.F.-B. (AGL2009-12427). L.J.M. was supported by a FP7-PIIF-2009 fellowship (Marie Curie Action) from the European Commission (GLUCOSE USE IN FISH) with Grant Agreement number 235581. A.P.P was supported by a Marie Curie Intra-European Fellowship from the European Commission (REPRO-SWIM) with Grant Agreement number 219971. M.M.-P. was supported by a FI fellowship from the Generalitat de Catalunya, Spain. Current address for A.P.P. is: Institute for Marine Resources and Ecosystem Studies (IMARES). Wageningen Aquaculture, Wageningen University & Research Centre, Korringaweg 5, 4401 NT Yerseke, The Netherlands. Wageningen Aquaculture is a consortium of IMARES (Institute for Marine Resources & Ecosystem Studies) and AFI (Aquaculture and Fisheries Group, Wageningen University), both part of Wageningen University & Research Centre (WUR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josep V. Planas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Planas, J.V. et al. (2013). Transcriptomic and Proteomic Response of Skeletal Muscle to Swimming-Induced Exercise in Fish. In: Palstra, A., Planas, J. (eds) Swimming Physiology of Fish. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31049-2_10

Download citation

Publish with us

Policies and ethics