Skip to main content

Effect of Powder Characteristics on Nanosintering

  • Chapter
  • First Online:
Sintering

Part of the book series: Engineering Materials ((ENG.MAT.,volume 35))

Abstract

If all other things are equal, nanopowders will sinter faster and at lower temperatures than larger powders. However, the increased surface area to volume ratio of these materials presents additional processing challenges that correspond to greater difficulty in achieving the goal of sintering for finer powders. This is not related to the “nano” effects as described in previous chapters, but to powder characteristics that can strongly influence the sintering behavior. These characteristics can be seen as the “real life” parameters, such as agglomeration state and contaminations that if not addressed properly can confuse sintering tendencies and complicate sintering effects at the nanoscale. This chapter presents the effects that may contribute to nanosintering and the importance of adequate processing of nanopowders for achieving optimum sintering behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Hamaker constant provides the means to determine an interaction parameter from the Van der Waals pair potential.

References

  1. Edelstein, A.S., Cammarata, R.C.: Nanomaterials: Synthesis, Properties and Applications. Taylor and Francis Group, New York (1996)

    Google Scholar 

  2. Pokropivny, V.V.: Powder Metall. Met. Ceram. 40, 485–496 (2001)

    CAS  Google Scholar 

  3. Cao, G.: Nanostructures and Nanomaterials: Synthesis, Properties and Applications. Imperial College Press, London (2004)

    Google Scholar 

  4. Shankar, K.S., Raychaudhuri, A.K.: Mater. Sci. Eng. C 25, 738–751 (2005)

    Google Scholar 

  5. Sergeev, G.B.: Nanochemistry. Elsevier, Amsterdam (2006)

    Google Scholar 

  6. Yoshimura, H.: Colloids Surf. A 282, 464–470 (2006)

    Google Scholar 

  7. Vollath, D.: Nanomaterials: An Introduction to Synthesis, Properties and Applications. Wiley-VCH, Weinheim (2008)

    Google Scholar 

  8. Ashby, M.F., Ferreira, P.J., Schodek, D.L.: Nanomaterials, Nanotechnologies and Design: An Introduction for Engineers and Architects. Butterworth-Heinemann, Burlington (2009)

    Google Scholar 

  9. Wu, B., Kuang, Y., Zhang, X., Chen, J.: Nano Today 6, 75–90 (2011)

    CAS  Google Scholar 

  10. Kannan, N., Subbalaxmi, S.: Rev. Adv. Mater. Sci. 27, 99–114 (2011)

    CAS  Google Scholar 

  11. Chawla, V., Prakash, S., Sidhu, B.S.: Mater. Manuf. Process. 22, 469–473 (2007)

    CAS  Google Scholar 

  12. Reed, J.S.: Principles of Ceramic Processing. Wiley, New York (1995)

    Google Scholar 

  13. Rahaman, M.N.: Ceramic Processing. CRC Press, Boca Raton (2007)

    Google Scholar 

  14. Stokes, R.J., Evans, D.F.: Fundamentals of Interfacial Engineering. Wiley-VCH, New York (1997)

    Google Scholar 

  15. Yang, X.C., Riehemann, W., Dubiel, M., Hofmeister, H.: Mater. Sci. Eng. B 95, 299–307 (2002)

    Google Scholar 

  16. Semaltianos, N.G.: Crit. Rev. Solid State Mater. Sci. 35, 105–124 (2010)

    CAS  Google Scholar 

  17. Huang, J.Y., Liao, X.Z., Zhu, Y.T., Zhou, F., Lavernia, E.J.: Philos. Mag. 83, 1407–1419 (2003)

    CAS  Google Scholar 

  18. Stranz, M., Koster, U.: J. Mater. Sci. 39, 5275–5277 (2004)

    CAS  Google Scholar 

  19. Lavernia, E.J., Han, B.Q., Schoenung, J.M.: Mater. Sci. Eng. A 493, 207–214 (2008)

    Google Scholar 

  20. Vogt, R.G., Zhang, Z., Topping, T.D., Lavernia, E.J., Schoenung, J.M.: J. Mater. Process. Technol. 209, 5046–5053 (2009)

    CAS  Google Scholar 

  21. Mandzy, N., Grulke, E., Druffel, T.: Powder Technol. 160, 121–126 (2005)

    CAS  Google Scholar 

  22. Fazio, S., Guzman, J., Colomer, M., Salomoni, A., Moreno, R.: J. Eur. Ceram. Soc. 28, 2171–2176 (2008)

    CAS  Google Scholar 

  23. Chung, S.J., Leonard, J.P., Nettleship, I., Lee, J.K., Soong, Y., Martello, D.V., Chyu, M.K.: Powder Technol. 194, 75–80 (2009)

    CAS  Google Scholar 

  24. Adair, J.H., Kerchner, J.A., Bell, N.S., Carasso, M.L.: Application of chemical principles in the solution synthesis and processing of ceramic and metal particles. In ACS Symposium Series, Washington, DC (1997)

    Google Scholar 

  25. Aruna, S.T., Mukasyan, A.S.: Curr. Opin. Solid State Mater. Sci. 12, 44–50 (2008)

    CAS  Google Scholar 

  26. Patil, K.C., Aruna, S.T., Mimani, T.: Curr. Opin. Solid State Mater. Sci. 6, 507–512 (2002)

    CAS  Google Scholar 

  27. Kanakala, R., Escudero, R., Rojas-George, G., Ramisetty, M., Graeve, O.A.: ACS Appl. Mater. Interf. 3, 1093–1100 (2011)

    CAS  Google Scholar 

  28. Kanakala, R., Rojas-George, G., Graeve, O.A.: J. Am. Ceram. Soc. 93, 3136–3141 (2010)

    CAS  Google Scholar 

  29. Lopez, O.A., McKittrick, J., Shea, L.E.: J. Lumin. 71, 1–11 (1997)

    CAS  Google Scholar 

  30. Shea, L.E., McKittrick, J., Lopez, O.A., Sluzky, E.: J. Am. Ceram. Soc. 79, 3257–3265 (1996)

    CAS  Google Scholar 

  31. Kumar, M., Ando, Y.: J. Nanosci. Nanotechn. 10, 3739–3758 (2010)

    CAS  Google Scholar 

  32. Campbell, S.A.: Mater. Sci. Eng. R 20, 1–36 (1997)

    Google Scholar 

  33. Lee, D.-W., Tolochko, O.V., Turaev, F.R., Kim, D., Kim, B.-K.: J. Nanosci. Nanotechn. 10, 349–354 (2010)

    CAS  Google Scholar 

  34. Choi, Y.J., Choi, J.W., Sohn, H.Y., Ryu, T., Hwang, K.S., Fang, Z.Z.: Int. J. Hydrogen Energy 34, 7700–7706 (2009)

    CAS  Google Scholar 

  35. Reuge, N., Bacsa, R., Serp, P., Caussat, B.: J. Phys. Chem. C 113, 19845–19852 (2009)

    Google Scholar 

  36. Ahmad, M.I., Bhattacharya, S.S., Fasel, C., Hahn, H.: J. Nanosci. Nanotechnol. 9, 5572–5577 (2009)

    CAS  Google Scholar 

  37. Bacsa, R.R., Dexpert-Ghys, J., Verelst, M., Falqui, A., Machado, B., Bacsa, W.S., Chen, P., Zakeeruddin, S.M., Graetzel, M., Serp, P.: Adv. Funct. Mater. 19, 875–886 (2009)

    CAS  Google Scholar 

  38. Choi, J.W., Sohn, H.Y., Choi, Y.J., Fang, Z.Z.: J. Power Sources 195, 1463–1471 (2010)

    CAS  Google Scholar 

  39. Komoda, H., Mori, T., Kominami, H., Nakanishi, Y., Hara, K.: J. Cryst. Growth 311, 2966–2969 (2009)

    CAS  Google Scholar 

  40. Ryu, T., Sohn, H.Y., Hwang, K.S., Fang, Z.Z.: Int. J. Refract. Met. Hard Mater. 27, 149–154 (2009)

    CAS  Google Scholar 

  41. Jin, W., Lee, I.-K., Kompch, A., Doefler, U., Winterer, M.: J. Eur. Ceram. Soc. 27, 4333–4337 (2007)

    CAS  Google Scholar 

  42. Schmitt, A.L., Higgins, J.M., Jin, S.: Nano Lett. 8, 810–815 (2008)

    CAS  Google Scholar 

  43. Park, H., Jie, H., Chae, K.-H., Park, J.-K., Anpo, M., Lee, D.-Y.: Curr. Appl. Phys. 8, 778–783 (2008)

    Google Scholar 

  44. Saterlie, M.S., Sahin, H., Kavlicoglu, B., Liu, Y., Graeve, O.A.: Nanosc. Res. Lett. 6, 217 (2011)

    Google Scholar 

  45. Graeve, O.A., Madadi, A., Kanakala, R., Sinha, K.: Metall. Mater. Trans. A. 41A, 2691–2697 (2010)

    CAS  Google Scholar 

  46. Sinha, K., Pearson, B., Casolco, S.R., Garay, J.E., Graeve, O.A.: J. Am. Ceram. Soc. 92, 2504–2511 (2009)

    CAS  Google Scholar 

  47. Xia, Y., Xiong, Y., Lim, B., Skrabalak, S.E.: Angew. Chem. Int. Ed. 48, 60–103 (2009)

    CAS  Google Scholar 

  48. Lu, X., Rycenga, M., Skrabalak, S.E., Wiley, B., Xia, Y.: Chemical synthesis of novel plasmonic nanoparticles. Annu. Rev. Phys. Chem. 60, 167–192 (2009)

    CAS  Google Scholar 

  49. Bittner, A.M.: Surf. Sci. Rep. 61, 383–428 (2006)

    CAS  Google Scholar 

  50. Chenjie, X., Shouheng, S.: Polym. Int. 56, 821–826 (2007)

    Google Scholar 

  51. Weeber, A.W., Bakker, H.: Phys. B 153, 93–135 (1988)

    CAS  Google Scholar 

  52. Koch, C.C.: Scripta Mater. 34, 21–27 (1996)

    CAS  Google Scholar 

  53. Tang, J., Zhao, W., Li, L., Falster, A.U., Simmons, W.B., Zhou, W.L., Ikuhara, Y., Zhang, J.H.: J. Mater. Res. 11, 733–738 (1996)

    CAS  Google Scholar 

  54. Huang, J.Y., Yasuda, H., Mori, H.: J. Am. Ceram. Soc. 83, 403–409 (2000)

    CAS  Google Scholar 

  55. Macwan, D.P., Dave, P.N., Chaturvedi, S.: J. Mater. Sci. 46, 3669–3686 (2011)

    CAS  Google Scholar 

  56. Chander, H.: Mater. Sci. Eng. R 49, 113–155 (2005)

    Google Scholar 

  57. Sternitzke, M.: J. Eur. Ceram. Soc. 17, 1061–1082 (1997)

    CAS  Google Scholar 

  58. Singh, A., Harimkar, S.P.: J. Alloys Compd. 497, 121–126 (2010)

    CAS  Google Scholar 

  59. Singh, H., Graeve, O.A.: Reverse micelle synthesis of zirconia powders: the use of hydrogen peroxide as washing solvent, In: Materials research society, pp. Z10.28.11–Z10.28.16 (2005)

    Google Scholar 

  60. Fang, Y., Cheng, J.P., Agrawal, D.K.: Mater. Lett. 58, 498–501 (2004)

    CAS  Google Scholar 

  61. Graeve, O.A., Kanakala, R., Kaufman, L., Sinha, K., Wang, E., Pearson, B., Rojas-George, G., Farmer, J.C.: Mater. Lett. 62, 2988–2991 (2008)

    CAS  Google Scholar 

  62. Kim, C.K., Lee, S., Shin, S.Y., Kim, D.H.: J. Alloys Compd. 453, 108–114 (2008)

    CAS  Google Scholar 

  63. Roy, D., Mitra, R., Chudoba, T., Witczak, Z., Lojkowski, W., Fecht, H.J., Manna, I.: Mater. Sci. Eng. A 497, 93–100 (2008)

    Google Scholar 

  64. Li, Q., Wang, G., Song, X., Fan, L., Hu, W., Xiao, F., Yang, Q., Ma, M., Zhang, J., Liu, R.: J. Mater. Process. Technol. 209, 3285–3288 (2009)

    CAS  Google Scholar 

  65. Varela, J.A., Perazolli, L.A., Longo, E., Leite, E.R., Cerri, J.A.: Radiat. Eff. Defects Solids 146, 131–143 (1998)

    CAS  Google Scholar 

  66. Mula, S., Mondal, K., Ghosh, S., Pabi, S.K.: Mater. Sci. Eng. A 527, 3757–3763 (2010)

    Google Scholar 

  67. Kim, C.K., Lee, H.S., Shin, S.Y., Lee, J.C., Kim, D.H., Lee, S.: Mater. Sci. Eng. A 406, 293–299 (2005)

    Google Scholar 

  68. Roy, D., Kumari, S., Mitra, R., Manna, I.: Intermetallics 15, 1595–1605 (2007)

    CAS  Google Scholar 

  69. Roy, D., Chakravarty, D., Mitra, R., Manna, I.: J. Alloys Compd. 460, 320–325 (2008)

    CAS  Google Scholar 

  70. Sasaki, T.T., Hono, K., Vierke, J., Wollgarten, M., Banhart, J.: Mater. Sci. Eng. A 490, 343–350 (2008)

    Google Scholar 

  71. Bian, H.H., Kim, D.W., Hong, K.S.: Mater. Lett. 58, 347–351 (2004)

    CAS  Google Scholar 

  72. Liao, S.C., Pae, K.D., Mayo, W.E.: Nanostruct. Mater. 8, 645–656 (1997)

    CAS  Google Scholar 

  73. Munir, Z.A., Anselmi-Tamburini, U.: Mater. Sci. Rep. 3, 277 (1989)

    CAS  Google Scholar 

  74. Merzhanov, A.G.: Ceram. Int. 21, 371–379 (1995)

    CAS  Google Scholar 

  75. Liu, J., Yao, W., Kear, B., Mukherjee, A.K.: Mater. Sci. Eng. B 171, 149–154

    Google Scholar 

  76. Asp, M., Agren, J.: Acta Mater. 54, 1241–1248 (2006)

    CAS  Google Scholar 

  77. Bowman, A.L.: J. Phys. Chem. 65, 1596 (1961)

    CAS  Google Scholar 

  78. Kelly, J.P., Graeve, O.A.: J. Am. Ceram. Soc. 94, 1706–1715 (2011)

    CAS  Google Scholar 

  79. Talmy, I.G., Zaykoski, J.A., Opeka, M.M.: J. Eur. Ceram. Soc. 30, 2253–2263 (2010)

    CAS  Google Scholar 

  80. West, A.R.: Basic Solid State Chemistry. Wiley, New York (1999)

    Google Scholar 

  81. Chandrasekhar, S., Pramada, P.N.: Ceram. Int. 27, 105–114 (2001)

    CAS  Google Scholar 

  82. Chandrasekhar, S., Pramada, P.N.: Ceram. Int. 27, 351–361 (2001)

    CAS  Google Scholar 

  83. Readey, M.J., Readey, D.W.: J. Am. Ceram. Soc. 69, 580–582 (1986)

    CAS  Google Scholar 

  84. Karapetrova, E., Platzer, R., Gardner, J.A., Torne, E., Sommers, J.A., Evenson, W.E.: J. Am. Ceram. Soc. 84, 65–70 (2001)

    CAS  Google Scholar 

  85. Wang, X.M., Lorimer, G., Xiao, P.: J. Am. Ceram. Soc. 88, 809–816 (2005)

    CAS  Google Scholar 

  86. Deptula, A., Lada, W., Olczak, T., Wawszczak, D., Sartowska, B., Goretta, K.C.: Ceram. Int. 33, 1617–1621 (2007)

    CAS  Google Scholar 

  87. Bacha, E., Deniard, P., Richard-Plouet, M., Brohan, L., Gundel, H.W.: Thin Solid Films 519, 5816–5819 (2011)

    CAS  Google Scholar 

  88. Kovalenko, V.V., Zhukova, A.A., Rumyantseva, M.N., Gaskov, A.M., Yushchenko, V.V., Ivanova, I.I., Pagnier, T.: Sens. Actuators B 126, 52–55 (2007)

    CAS  Google Scholar 

  89. Garbassi, F., Melloceresa, E., Occhiello, E., Pozzi, L., Visca, M., Lenti, D.M.: Langmuir 3, 173–179 (1987)

    CAS  Google Scholar 

  90. Busca, G., Lorenzelli, V., Bolis, V.: Mater. Chem. Phys. 31, 221–228 (1992)

    CAS  Google Scholar 

  91. Castro, R.H.R., Pereira, G.J., Gouvea, D.: Appl. Surf. Sci. 253, 4581–4585 (2007)

    CAS  Google Scholar 

  92. Maeland, D., Suciu, C., Waernhus, I., Hoffmann, A.C.: J. Eur. Ceram. Soc. 29, 2537–2547 (2009)

    CAS  Google Scholar 

  93. Tanaka, I., Kleebe, H.J., Cinibulk, M.K., Bruley, J., Clarke, D.R., Ruhle, M.: J. Am. Ceram. Soc. 77, 911–914 (1994)

    CAS  Google Scholar 

  94. Luo, J.: Curr. Opin. Solid State Mater. Sci. 12, 81–88 (2008)

    CAS  Google Scholar 

  95. Herring, C.: J. Appl. Phys. 21, 301–303 (1950)

    CAS  Google Scholar 

  96. Yan, M.F., Rhodes, W.W.: Mater. Sci. Eng. 61, 59–66 (1983)

    CAS  Google Scholar 

  97. Groza, J.R., Dowding, R.J.: Nanostruct. Mater. 7, 749–768 (1996)

    CAS  Google Scholar 

  98. Vasylkiv, O., Sakka, Y.: Scripta Mater. 44, 2219–2223 (2001)

    CAS  Google Scholar 

  99. Kaliszewski, M.S., Heuer, A.H.: J. Am. Ceram. Soc. 73, 1504–1509 (1990)

    CAS  Google Scholar 

  100. Ferkel, H., Hellmig, R.J.: Nanostruct. Mater. 11, 617–622 (1999)

    CAS  Google Scholar 

  101. Shiau, F.S., Fang, T.T., Leu, T.H.: J. Am. Ceram. Soc. 80, 286–290 (1997)

    CAS  Google Scholar 

  102. Ting, J.M., Lin, R.Y.: J. Mater. Sci. 30, 2382–2389 (1995)

    CAS  Google Scholar 

  103. Ting, J.M., Lin, R.Y.: J. Mater. Sci. 29, 1867–1872 (1994)

    CAS  Google Scholar 

  104. Wonisch, A., Kraft, T., Moseler, M., Riedel, H.: J. Am. Ceram. Soc. 92, 1428–1434 (2009)

    CAS  Google Scholar 

  105. Darcovich, K., Toll, F., Hontanx, P., Roux, V., Shinagawa, K.: Mater. Sci. Eng. A 348, 76–83 (2003)

    Google Scholar 

  106. McEntire, B.J.: Dry pressing. In: Engineered Materials Handbook, vol. 4, pp. 141–146. ASM International, Materials Park (1991)

    Google Scholar 

  107. Kennard, F.: Cold isostatic pressing. In: Engineered Materials Handbook, vol. 4, pp. 147–152. ASM International, Materials Park (1991)

    Google Scholar 

  108. Lukasiewicz, S.J.: Granulation and spray drying. In: Engineered Materials Handbook, vol. 4, pp. 100–108. ASM International, Materials Park (1991)

    Google Scholar 

  109. Schilling, C.H, Aksay, I.A.: Slip casting. In: Engineered Materials Handbook, vol. 4, pp. 153–160. ASM International, Materials Park (1991)

    Google Scholar 

  110. Mistler, R.E.: Tape casting. In: Engineering Materials Handbook, vol. 4, pp. 161–165. ASM International, Materials Park (1991)

    Google Scholar 

  111. Ruppel, I.: Extrusion. In: Engineered Materials Handbook, vol. 4, pp. 166–172. ASM International, Materials Park (1991)

    Google Scholar 

  112. Mutsuddy, B.C.: Injection molding. In: Engineered Materials Handbook, vol. 4, pp. 173–180. ASM International, Materials Park (1991)

    Google Scholar 

  113. Munir, Z.A., Quach, D.V., Ohyanagi, M.: J. Am. Ceram. Soc. 94, 1–19 (2011)

    CAS  Google Scholar 

  114. McAfee, R.J., Nettleship, I.: J. Am. Ceram. Soc. 89, 1273–1279 (2006)

    CAS  Google Scholar 

  115. Dengiz, O., McAfee, R., Nettleship, I., Smith, A.E.: J. Eur. Ceram. Soc. 27, 1927–1933 (2007)

    CAS  Google Scholar 

Download references

Acknowledgments

This chapter was written with support from the National Science Foundation under grant DMR 0503017.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kelly, J.P., Graeve, O.A. (2012). Effect of Powder Characteristics on Nanosintering. In: Castro, R., van Benthem, K. (eds) Sintering. Engineering Materials, vol 35. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31009-6_4

Download citation

Publish with us

Policies and ethics