Skip to main content

Obsessive–Compulsive Disorders in Animals

  • Chapter
  • First Online:
Deep Brain Stimulation
  • 1744 Accesses

Abstract

An increasing body of evidence suggests deep brain stimulation (DBS) is a therapeutic alternative in the treatment of otherwise therapy-resistant obsessive–compulsive disorders (OCD). An inconsistency in the demonstration of beneficial effects, however, indicates that the optimal DBS parameters and brain sites for the treatment of OCD have not been found yet. This chapter summarizes animal experimental studies using DBS as an investigative tool to systematically map brain regions at which DBS affects symptoms specific to OCD and to draw conclusions on the (patho-)physiological activity of the brain areas investigated in the course of symptom manifestation and reduction. Furthermore, the chapter discusses the translational validity of such animal experimental approaches as well as their contribution to further promote the establishment of DBS in the treatment of patients with otherwise therapy-resistant psychiatric disorders, such as OCD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albelda N, Joel D (2012) Animal models of obsessive compulsive disorder: exploring pharmacology and neural substrates. Neurosci Biobehav Rev 36(1):47–63

    Article  PubMed  CAS  Google Scholar 

  • Albin RL, Young AB, Penney JB (1989) The functional anatomy of basal ganglia disorders. Trends Neurosci 12(10):366–375

    Article  PubMed  CAS  Google Scholar 

  • Andersen SL, Greene-Colozzi EA, Sonntag KC (2010) A novel, multiple symptom model of obsessive-compulsive-like behaviors in animals. Biol Psychiatry 68:741–747

    Article  PubMed  Google Scholar 

  • Benabid AL, Pollak P, Gervason C, Hoffmann D, Gao DM, Hommel M, Perret JE, de Rougemont J (1991) Long-term suppression of tremor by chronic stimulation of the ventral intermediate thalamic nucleus. Lancet 337:403–406

    Article  PubMed  CAS  Google Scholar 

  • Benazzouz A, Hallett M (2000) Mechanism of action of deep brain stimulation. Neurology 55(12 Suppl 6):S13–S16

    PubMed  CAS  Google Scholar 

  • Beurrier C, Bioulac B, Audin J, Hammond C (2001) High-frequency stimulation produces a transient blockade of voltage-gated currents in subthalamic neurons. J Neurophysiol 85:1351–1356

    PubMed  CAS  Google Scholar 

  • Bourin M, Fiocco AJ, Clenet F (2001) How valuable are animal models in defining antidepressant activity? Hum Psychopharmacol 16(1):9–21

    Article  PubMed  CAS  Google Scholar 

  • Bruet N, Windels F, Carcenac C, Feuerstein C, Bertrand A, Poupard A, Savasta M (2003) Neurochemical mechanisms induced by high frequency stimulation of the subthalamic nucleus: increase of extracellular striatal glutamate and GABA in normal and hemiparkinsonian rats. J Neuropathol Exp Neurol 62:1228–1240

    PubMed  CAS  Google Scholar 

  • Carpenter TL, Pazdernik TL, Levant B (2003) Differences in quinpirole-induced local cerebral glucose utilization between naive and sensitized rats. Brain Res 964:295–301

    Article  PubMed  CAS  Google Scholar 

  • Denys D, Mantione M, Figee M, van den Munckhof P, Koerselman F, Westenberg H, Bosch A, Schuurman R (2010) Deep brain stimulation of the nucleus accumbens for treatment-refractory obsessive-compulsive disorder. Arch Gen Psychiatry 67(10):1061–1068

    Article  PubMed  Google Scholar 

  • Djodari-Irani A, Klein J, Banzhaf J, Joel D, Heinz A, Harnack D, Lagemann T, Juckel G, Kupsch A, Morgenstern R, Winter C (2011) Activity modulation of the globus pallidus and the nucleus entopeduncularis affects compulsive checking in rats. Behav Brain Res 219(1):149–158

    Article  PubMed  Google Scholar 

  • Dostrovsky JO, Levy R, Wu JP, Hutchison WD, Tasker RR, Lozano AM (2000) Microstimulation-induced inhibition of neuronal firing in human globus pallidus. J Neurophysiol 84(1):570–574

    PubMed  CAS  Google Scholar 

  • Joel D (2006a) Current animal models of obsessive compulsive disorder: a critical review. Prog Neuropsychopharmacol Biol Psychiatry 30:374–388

    Article  PubMed  Google Scholar 

  • Joel D (2006b) The signal attenuation rat model of obsessive-compulsive disorder: a review. Psychopharmacology 186:487–503

    Article  PubMed  CAS  Google Scholar 

  • Klavir O, Flash S, Winter C, Joel D (2009) High frequency stimulation and pharmacological inactivation of the subthalamic nucleus reduces ‘compulsive’ lever-pressing in rats. Exp Neurol 215:101–109

    Article  PubMed  CAS  Google Scholar 

  • Klavir O, Winter C, Joel D (2011) High but not low frequency stimulation of both the globus pallidus and the entopeduncular nucleus reduces ‘compulsive’ lever-pressing in rats. Behav Brain Res 216:84–93

    Article  PubMed  Google Scholar 

  • Koo MS, Kim EJ, Roh D, Kim CH (2010) Role of dopamine in the pathophysiology and treatment of obsessive compulsive disorder. Expert Rev Neurother 10(2):275–290

    Article  PubMed  CAS  Google Scholar 

  • Korff S, Harvey BH (2006) Animal models of obsessive compulsive disorder: rationale to understanding psychobiology and pharmacology. Psychiatr Clin N Am 29:371–390

    Article  Google Scholar 

  • Lee KH, Blaha CD, Harris BT, Cooper S, Hitti FL, Leiter JC, Roberts DW, Kim U (2006) Dopamine efflux in the rat striatum evoked by electrical stimulation of the subthalamic nucleus: potential mechanism of action in Parkinson’s disease. Eur J Neurosci 23:1005–1014

    Article  PubMed  Google Scholar 

  • Limousin P, Pollak P, Benazzouz A, Hoffmann D, Le Bas JF, Broussolle E, Perret JE, Benabid AL (1995) Effect of parkinsonian signs and symptoms of bilateral subthalamic nucleus stimulation. Lancet 345:91–95

    Article  PubMed  CAS  Google Scholar 

  • Mallet L, Polosan M, Jaafari N, Baup N, Welter ML, Fonatine D, du Montcel ST, Jelnik J, Chéreau I, Arbus C, Raoul S, Aouizerate B, Damier P, Charbardès S, Czernecki V, Ardouin C, Krebs MO, Bardinet E, Chaynes P, Burbaud P, Cornu P, Derost P, Bougerol T, Bataille B, Mattei V, Dormont D, Devaux B, Vérin M, Houeto JL, Pollak P, Benabid AL, Agid Y, Krack P, Millet B, Pelisollo A. (2008) N Engl J Med; 359(29):2121–2134

    Google Scholar 

  • McIntyre CC, Savasta M, Kerkerian-Le GL, Vitek JL (2004) Uncovering the mechanism(s) of action of deep brain stimulation: activation, inhibition, or both. Clin Neurophysiol 115:1239–1248

    Article  PubMed  Google Scholar 

  • Meissner W, Harnack D, Reese R, Paul G, Reum T, Ansorge M, Kusserow H, Winter C, Morgenstern R, Kupsch A (2003) High-frequency stimulation of the subthalamic nucleus enhances striatal dopamine release and metabolism in rats. J Neurochem 85:601–609

    Article  PubMed  CAS  Google Scholar 

  • Montgomery EB Jr, Baker KB (2000) Mechanisms of deep brain stimulation and future technical developments. Neurol Res 22:259–266

    PubMed  Google Scholar 

  • Mundt A, Klein J, Joel D, Heinz A, Djodari-Irani A, Harnack D, Kupsch A, Orawa H, Juckel G, Morgenstern R, Winter C (2009) High-frequency stimulation of the nucleus accumbens core and shell reduces quinpirole-induced compulsive checking in rats. Eur J Neurosci 29:2401–2412

    Article  PubMed  Google Scholar 

  • Perreault ML, Graham D, Bisnaire L, Simms J, Hayton S, Szechtman H (2006) Kappa-opioid agonist U69593 potentiates locomotor sensitization to the D2/D3 agonist quinpirole: pre- and postsynaptic mechanisms. Neuropsychopharmacology 31(9):1967–1981

    Article  PubMed  CAS  Google Scholar 

  • Platt B, Beyer CE, Schechter LE, Rosenzweig-Lipson S (2008) Schedule-induced polydipsia: a rat model of obsessive compulsive disorder. Curr Protoc Neurosci 9(9):27

    PubMed  Google Scholar 

  • Ranck JB Jr (1975) Which elements are excited in electrical stimulation of mammalian central nervous system: a review. Brain Res 98:417–440

    Article  PubMed  Google Scholar 

  • Richards TL, Pazdernik TL, Levant B (2007) Clorgyline-induced modification of behavioral sensitization to quinpirole: effects on local cerebral glucose utilization. Brain Res 1160:124–133

    Article  PubMed  CAS  Google Scholar 

  • Sesia T, Bizup B, Schreiber S, Grace AA (2011) Quinpirole and clomipramine chronic injection models for obsessive compulsive disorders: effect on ventral tegmentale activity and OCD-related behavioral paradigms. Society for Neuroscience Abstract Number 66.15

    Google Scholar 

  • Szechtman H, Sulis W, Eilam D (1998) Quinpirole induces compulsive checking behavior in rats: a potential animal model of obsessive-compulsive disorder (OCD). Behav Neurosci 112:1475–1485

    Article  PubMed  CAS  Google Scholar 

  • Szechtman H, Eckert MJ, Tse WS, Boersma JT, Bonura CA, McClelland JZ, Culver KE, Eilam D (2001) Compulsive checking behavior of quinpirole-sensitized rats as an animal model of obsessive-compulsive disorder (OCD): form and control. BMC Neurosci 2:4

    Article  PubMed  CAS  Google Scholar 

  • Ushe M, Mink JW, Tabbal SD, Hong M, Schneider GP, Rich KM, Lyons KE, Pahwa R, Perlmutter JS (2006) Postural tremor suppression is dependent on thalamic stimulation frequency. Mov Disord 21:1290–1292

    Article  PubMed  Google Scholar 

  • van Kuyck K, Demeulemeester H, Feys H, De WW, Dewil M, Tousseyn T, De SP, Gybels J, Bogaerts K, Dom R, Nuttin B (2003) Effects of electrical stimulation or lesion in nucleus accumbens on the behaviour of rats in a T-maze after administration of 8-OH-DPAT or vehicle. Behav Brain Res 140:165–173

    Article  PubMed  Google Scholar 

  • van Kuyck K, Brak K, Das J, Rizopoulos D, Nuttin B (2008) Comparative study of the effects of electrical stimulation in the nucleus accumbens, the mediodorsal thalamic nucleus and the bed nucleus of the stria terminalis in rats with schedule-induced polydipsia. Brain Res 1201:93–99

    Article  PubMed  Google Scholar 

  • Vitek JL (2002) Mechanisms of deep brain stimulation: excitation or inhibition. Mov Disord 17(Suppl 3):S69–S72

    Article  PubMed  Google Scholar 

  • Willner P (1991) Behavioural models in psychopharmacology. In: Willner P (ed) Behavioural models in psychopharmacology: theoretical, industrial and clinical perspectives. Cambridge University Press, Cambridge, pp 3–18

    Google Scholar 

  • Winter C, Mundt A, Jalali R, Joel D, Harnack D, Morgenstern R, Juckel G, Kupsch A (2008a) High frequency stimulation and temporary inactivation of the subthalamic nucleus reduce quinpirole-induced compulsive checking behavior in rats. Exp Neurol 210:217–228

    Article  PubMed  Google Scholar 

  • Winter C, Lemke C, Sohr R, Meissner W, Harnack D, Juckel G, Morgenstern R, Kupsch A (2008b) High frequency stimulation of the subthalamic nucleus modulates neurotransmission in limbic brain regions of the rat. Exp Brain Res 185:497–507

    Article  PubMed  Google Scholar 

  • Woods A, Smith C, Szewczak M, Dunn RW, Cornfeldt M, Corbett R (1993) Selective serotonin re-uptake inhibitors decrease schedule-induced polydipsia in rats: a potential model for obsessive compulsive disorder. Psychopharmacology 112:195–198

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine Winter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Winter, C. (2012). Obsessive–Compulsive Disorders in Animals. In: Denys, D., Feenstra, M., Schuurman, R. (eds) Deep Brain Stimulation. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30991-5_7

Download citation

Publish with us

Policies and ethics