Mechanisms of Action of Deep Brain Stimulation for the Treatment of Psychiatric Disorders

  • J. Luis Lujan
  • Cameron C. McIntyreEmail author


Deep brain stimulation (DBS) has recently emerged as a potential treatment for medically intractable psychiatric disease. Pilot clinical studies have been performed with DBS of the subcallosal cingulate (SCC) white matter and ventral anterior internal capsule/ventral striatum (VC/VS) for the treatment of depression and obsessive–compulsive disorder with encouraging results. However, little is known about the underlying neural response and network activity generated when DBS is applied to these targets. This chapter summarizes the current understanding of the axonal response to DBS, and discusses the general network architectures believed to underlie psychiatric disease. We use diffusion tensor imaging tractography to better understand axonal trajectories surrounding DBS electrodes implanted in the SCC and VC/VS. Finally, we attempt to reconcile various data sets by presenting generalized hypotheses on potential therapeutic mechanisms of DBS for the treatment of psychiatric disorders.


Major Depressive Disorder Deep Brain Stimulation Anterior Cingulate Cortex Ventral Striatum Axonal Pathway 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abelson JL, Curtis GC, Sagher O, Albucher RC, Harrigan M, Taylor SF, Martis B, Giordani B (2005) Deep brain stimulation for refractory obsessive-compulsive disorder. Biol Psychiatry 57(5):510–516PubMedCrossRefGoogle Scholar
  2. Benabid AL, Wallace B, Mitrofanis J, Xia R, Piallat B, Chabardes S, Berger F (2005) A putative generalized model of the effects and mechanism of action of high frequency electrical stimulation of the central nervous system. Acta Neurol Belg 105(3):149–157PubMedGoogle Scholar
  3. Bennett MR (2000) The concept of long term potentiation of transmission at synapses. Prog Neurobiol 60(2):109–137PubMedCrossRefGoogle Scholar
  4. Borairi S, Dougherty DD (2011) The use of neuroimaging to predict treatment response for neurosurgical interventions for treatment-refractory major depression and obsessive-compulsive disorder. Harv Rev Psychiatry 19(3):155–161PubMedCrossRefGoogle Scholar
  5. Cannistraro PA, Makris N, Howard JD, Wedig MM, Hodge SM, Wilhelm S, Kennedy DN, Rauch SL (2007) A diffusion tensor imaging study of white matter in obsessive-compulsive disorder. Depress Anxiety 24(6):440–446PubMedCrossRefGoogle Scholar
  6. Chaturvedi A, Butson CR, Lempka SF, Cooper SE, McIntyre CC (2010) Patient-specific models of deep brain stimulation: Influence of field model complexity on neural activation predictions. Brain Stimulat 3(2):65–77CrossRefGoogle Scholar
  7. Chollet F, Weiller C (2000) Recovery of neurological function. In: Toga AW, Frackowiak RS, Mazziotta JC (eds) Brain mapping: the disorders. Academic Press, New YorkGoogle Scholar
  8. Figee M, Vink M, de Geus F, Vulink N, Veltman DJ, Westenberg H, Denys D (2011) Dysfunctional reward circuitry in obsessive-compulsive disorder. Biol Psychiatry 69(9):867–874PubMedCrossRefGoogle Scholar
  9. Greenberg BD, Malone DA, Friehs GM, Rezai AR, Kubu CS, Malloy PF, Salloway SP, Okun MS, Goodman WK, Rasmussen SA (2006) Three-year outcomes in deep brain stimulation for highly resistant obsessive-compulsive disorder. Neuropsychopharmacology 31(11):2384–2393PubMedCrossRefGoogle Scholar
  10. Greenberg BD, Gabriels LA, Malone DA Jr, Rezai AR, Friehs GM, Okun MS, Shapira NA, Foote KD, Cosyns PR, Kubu CS, Malloy PF, Salloway SP, Giftakis JE, Rise MT, Machado AG, Baker KB, Stypulkowski PH, Goodman WK, Rasmussen SA, Nuttin BJ (2010) Deep brain stimulation of the ventral internal capsule/ventral striatum for obsessive-compulsive disorder: worldwide experience. Mol Psychiatry 15(1):64–79PubMedCrossRefGoogle Scholar
  11. Gutman DA, Holtzheimer PE, Behrens TE, Johansen-Berg H, Mayberg HS (2009) A tractography analysis of two deep brain stimulation white matter targets for depression. Biol Psychiatry 65(4):276–282PubMedCrossRefGoogle Scholar
  12. Haber SN, Brucker JL (2009) Cognitive and limbic circuits that are affected by deep brain stimulation. Front Biosci 14:1823–1834PubMedCrossRefGoogle Scholar
  13. Hallett M (2000) Plasticity. In: Mazziotta JC, Toga AW, Frackowiak RS (eds) Brain mapping: the disorders. Academic Press. New YorkGoogle Scholar
  14. Johansen-Berg H, Gutman DA, Behrens TE, Matthews PM, Rushworth MF, Katz E, Lozano AM, Mayberg HS (2008) Anatomical connectivity of the subgenual cingulate region targeted with deep brain stimulation for treatment-resistant depression. Cereb Cortex 18(6):1374–1383PubMedCrossRefGoogle Scholar
  15. Kopell BH, Greenberg B, Rezai AR (2004) Deep brain stimulation for psychiatric disorders. J Clin Neurophysiol 21(1):51–67PubMedCrossRefGoogle Scholar
  16. Krishnan V, Nestler EJ (2010) Linking molecules to mood: new insight into the biology of depression. Am J Psychiatry 167(11):1305–1320PubMedCrossRefGoogle Scholar
  17. Lehman JF, Greenberg BD, McIntyre CC, Rasmussen SA, Haber SN (2011) Rules ventral prefrontal cortical axons use to reach their targets: implications for diffusion tensor imaging tractography and deep brain stimulation for psychiatric illness. J Neurosci 31(28):10392–10402PubMedCrossRefGoogle Scholar
  18. Lozano AM, Mayberg HS, Giacobbe P, Hamani C, Craddock RC, Kennedy SH (2008) Subcallosal cingulate gyrus deep brain stimulation for treatment-resistant depression. Biol Psychiatry 64(6):461–467PubMedCrossRefGoogle Scholar
  19. Lujan JL, Chaturvedi A, Malone DA, Rezai AR, Machado AG, McIntyre CC (2012) Axonal pathways linked to therapeutic and nontherapeutic outcomes during psychiatric deep brain stimulation. Hum Brain Mapp 33(4):958–968PubMedCrossRefGoogle Scholar
  20. Malone DA Jr, Dougherty DD, Rezai AR, Carpenter LL, Friehs GM, Eskandar EN, Rauch SL, Rasmussen SA, Machado AG, Kubu CS, Tyrka AR, Price LH, Stypulkowski PH, Giftakis JE, Rise MT, Malloy PF, Salloway SP, Greenberg BD (2009) Deep brain stimulation of the ventral capsule/ventral striatum for treatment-resistant depression. Biol Psychiatry 65(4):267–275PubMedCrossRefGoogle Scholar
  21. Mayberg HS (1997) Limbic-cortical dysregulation: a proposed model of depression. J Neuropsychiatry Clin Neurosci 9(3):471–481PubMedGoogle Scholar
  22. Mayberg HS, Brannan SK, Tekell JL, Silva JA, Mahurin RK, McGinnis S, Jerabek PA (2000) Regional metabolic effects of fluoxetine in major depression: serial changes and relationship to clinical response. Biol Psychiatry 48(8):830–843PubMedCrossRefGoogle Scholar
  23. Mayberg HS, Lozano AM, Voon V, McNeely HE, Seminowicz D, Hamani C, Schwalb JM, Kennedy SH (2005) Deep brain stimulation for treatment-resistant depression. Neuron 45(5):651–660PubMedCrossRefGoogle Scholar
  24. McCracken CB, Grace AA (2007) High-frequency deep brain stimulation of the nucleus accumbens region suppresses neuronal activity and selectively modulates afferent drive in rat orbitofrontal cortex in vivo. J Neurosci 27(46):12601–12610PubMedCrossRefGoogle Scholar
  25. McIntyre CC, Grill WM, Sherman DL, Thakor NV (2004a) Cellular effects of deep brain stimulation: model-based analysis of activation and inhibition. J Neurophysiol 91(4):1457–1469PubMedCrossRefGoogle Scholar
  26. McIntyre CC, Hahn PJ (2010) Network perspectives on the mechanisms of deep brain stimulation. Neurobiol Dis 38(3):329–337PubMedCrossRefGoogle Scholar
  27. McIntyre CC, Mori S, Sherman DL, Thakor NV, Vitek JL (2004b) Electric field and stimulating influence generated by deep brain stimulation of the subthalamic nucleus. Clin Neurophysiol 115(3):589–595PubMedCrossRefGoogle Scholar
  28. McIntyre CC, Richardson AG, Grill WM (2002) Modeling the excitability of mammalian nerve fibers: influence of afterpotentials on the recovery cycle. J Neurophysiol 87(2):995–1006PubMedGoogle Scholar
  29. McNeal DR (1976) Analysis of a model for excitation of myelinated nerve. IEEE Trans Biomed Eng 23(4):329–337PubMedCrossRefGoogle Scholar
  30. Miocinovic S, Lempka SF, Russo GS, Maks CB, Butson CR, Sakaie KE, Vitek JL, McIntyre CC (2009) Experimental and theoretical characterization of the voltage distribution generated by deep brain stimulation. Exp Neurol 216(1):166–176PubMedCrossRefGoogle Scholar
  31. Mori S, Crain BJ, Chacko VP, van Zijl PC (1999) Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann Neurol 45(2):265–269PubMedCrossRefGoogle Scholar
  32. Nemeroff CB (2007) The burden of severe depression: a review of diagnostic challenges and treatment alternatives. J Psychiatr Res 41:189–206PubMedCrossRefGoogle Scholar
  33. Price JL (1999) Prefrontal cortical networks related to visceral function and mood. Ann N Y Acad Sci 877:383–396PubMedCrossRefGoogle Scholar
  34. Rattay F (1986) Analysis of models for external stimulation of axons. IEEE Trans Biomed Eng 33(10):974–977PubMedCrossRefGoogle Scholar
  35. Rauch SL, Dougherty DD, Malone D, Rezai A, Friehs G, Fischman AJ, Alpert NM, Haber SN, Stypulkowski PH, Rise MT, Rasmussen SA, Greenberg BD (2006) A functional neuroimaging investigation of deep brain stimulation in patients with obsessive-compulsive disorder. J Neurosurg 104(4):558–565PubMedCrossRefGoogle Scholar
  36. Saleem KS, Kondo H, Price JL (2008) Complementary circuits connecting the orbital and medial prefrontal networks with the temporal, insular, and opercular cortex in the macaque monkey. J Comp Neurol 506(4):659–693PubMedCrossRefGoogle Scholar
  37. Saygin ZM, Osher DE, Augustinack J, Fischl B, Gabrieli JD (2011) Connectivity-based segmentation of human amygdala nuclei using probabilistic tractography. Neuroimage 56(3):1353–1361PubMedCrossRefGoogle Scholar
  38. Scharinger C, Rabl U, Pezawas L, Kasper S (2011) The genetic blueprint of major depressive disorder: contributions of imaging genetics studies. World J Biol Psychiatry 12(7):474–488PubMedCrossRefGoogle Scholar
  39. Schulman JJ, Cancro R, Lowe S, Lu F, Walton KD, Llinás RR (2011) Imaging of thalamocortical dysrhythmia in neuropsychiatry. Front Hum Neurosci 5:69PubMedCrossRefGoogle Scholar
  40. Seitz RJ, Huang Y, Knorr U, Tellmann L, Herzog H, Freund HJ (1995) Large-scale plasticity of the human motor cortex. NeuroReport 6(5):742–744PubMedCrossRefGoogle Scholar
  41. Smith R, Fadok RA, Purcell M, Liu S, Stonnington C, Spetzler RF, Baxter LC (2011) Localizing sadness activation within the subgenual cingulate in individuals: a novel functional MRI paradigm for detecting individual differences in the neural circuitry underlying depression. Brain Imaging Behavior 5:229–239CrossRefGoogle Scholar
  42. Sturm V, Lenartz D, Koulousakis A, Treuer H, Herholz K, Klein JC, Klosterkotter J (2003) The nucleus accumbens: a target for deep brain stimulation in obsessive-compulsive- and anxiety-disorders. J Chem Neuroanat 26(4):293–299PubMedCrossRefGoogle Scholar
  43. Szeszko PR, Ardekani BA, Ashtari M, Malhotra AK, Robinson DG, Bilder RM, Lim KO (2005) White matter abnormalities in obsessive-compulsive disorder: a diffusion tensor imaging study. Arch Gen Psychiatry 62(7):782–790PubMedCrossRefGoogle Scholar
  44. Tasan RO, Nguyen NK, Weger S, Sartori SB, Singewald N, Heilbronn R, Herzog H, Sperk G (2010) The central and basolateral amygdala are critical sites of neuropeptide Y/Y2 receptor-mediated regulation of anxiety and depression. J Neurosci 30(18):6282–6290PubMedCrossRefGoogle Scholar
  45. Vaidya VA, Duman RS (2001) Depresssion—emerging insights from neurobiology. Br Med Bull 57:61–79PubMedCrossRefGoogle Scholar
  46. Wakana S, Caprihan A, Panzenboeck MM, Fallon JH, Perry M, Gollub RL, Hua K, Zhang J, Jiang H, Dubey P, Blitz A, van Zijl P, Mori S (2007) Reproducibility of quantitative tractography methods applied to cerebral white matter. Neuroimage 36(3):630–644PubMedCrossRefGoogle Scholar
  47. Ward RP, Dorsa DM (1999) Molecular and behavioral effects mediated by Gs-coupled adenosine A2a, but not serotonin 5-Ht4 or 5-Ht6 receptors following antipsychotic administration. Neuroscience 89(3):927–938PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of Biomedical EngineeringCleveland Clinic FoundationClevelandUSA

Personalised recommendations