Skip to main content

Complementary Bell Numbers: Arithmetical Properties and Wilf’s Conjecture

  • Conference paper
  • First Online:
Advances in Combinatorics

Abstract

The 2-adic valuations of Bell and complementary Bell numbers are determined. The complementary Bell numbers are known to be zero at n = 2 and H. S. Wilf conjectured that this is the only case where vanishing occurs. N. C. Alexander and J. An proved (independently) that there are at most two indices where this happens. This paper presents yet an alternative proof of the latter.

To Herb Wilf, with admiration and gratitude

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. C. Alexander. Non-vanishing of Uppuluri-Carpenter. Preprint. 2006.

    Google Scholar 

  2. T. Amdeberhan, D. Manna, and V. Moll. The 2-adic valuation of a sequence arising from a rational integral. Jour. Comb. A, 115:1474–1486, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  3. T. Amdeberhan, D. Manna, and V. Moll. The 2-adic valuation of Stirling numbers. Experimental Mathematics, 17:69–82, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  4. T. Amdeberhan, L. Medina, and V. Moll. Arithmetical properties of a sequence arising from an arctangent sum. Journal of Number Theory, 128:1808–1847, 2008.

    Article  MathSciNet  Google Scholar 

  5. J. An. Wilf conjecture. Preprint. 2008.

    Google Scholar 

  6. G. P. Egorychev and E. V. Zima. Integral representation and algorithms for closed form summation. In M. Hazewinkel, editor, Handbook of Algebra, volume 5, pages 459–529. Elsevier, 2008.

    Google Scholar 

  7. M. Klazar. Bell numbers, their relatives and algebraic differential equations. J. Comb. Theory Ser. A, 102:63–87, 2003.

    Article  MathSciNet  MATH  Google Scholar 

  8. M. Klazar. Counting even and odd partitions. Amer. Math. Monthly, 110:527–532, 2003.

    Article  MathSciNet  MATH  Google Scholar 

  9. A. M. Legendre. Théorie des Nombres. Firmin Didot Frères, Paris, 1830.

    Google Scholar 

  10. V. Moll and X. Sun. A binary tree representation for the 2-adic valuation of a sequence arising from a rational integral. INTEGERS, 10:211–222, 2010.

    MathSciNet  MATH  Google Scholar 

  11. M. Ram Murty and S. Sumner. On the p-adic series \(\sum _{n=1}^{\infty }{n}^{k} \cdot n!\). In H. Kisilevsky and E. Z. Goren, editors, CRM Proceedings and Lectures Notes. Number Theory, Canadian Number Theory Association VII, pages 219–228. Amer. Math. Soc., 2004.

    Google Scholar 

  12. M. Petkovsek, H. Wilf, and D. Zeilberger. A=B. A. K. Peters, Ltd., 1st edition, 1996.

    Google Scholar 

  13. T. Laffey S. De Wannemacker and R. Osburn. On a conjecture of Wilf. Journal of Combinatorial Theory Series A, 114:1332–1349, 2007.

    Article  MathSciNet  MATH  Google Scholar 

  14. M. V. Subbarao and A. Verma. Some remarks on a product expansion: An unexplored partition function. In F. G. Garvan and M. E. H. Ismail, editors, Symbolic Computation, Number Theory, Special Functions, Physics and Combinatorics, Gainsville, Florida, 1999, pages 267–283. Kluwer, Dordrecht, 2001.

    Google Scholar 

  15. X. Sun and V. Moll. The p-adic valuation of sequences counting alternating sign matrices. Journal of Integer Sequences, 12:09.3.8, 2009.

    MathSciNet  Google Scholar 

  16. V. R. Rao Uppuluri and J. A. Carpenter. Numbers generated by the function exp(1 − e x). Fib. Quart., 7:437–448, 1969.

    Google Scholar 

  17. Y. Yang. On a multiplicative partition function. Elec. Jour. Comb., 8:Research Paper 19, 2001.

    Google Scholar 

Download references

Acknowledgements

The authors wish to thank the referees for a careful reading of the paper. The last author acknowledges the partial support of NSF-DMS 0713836.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tewodros Amdeberhan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Amdeberhan, T., De Angelis, V., Moll, V.H. (2013). Complementary Bell Numbers: Arithmetical Properties and Wilf’s Conjecture. In: Kotsireas, I., Zima, E. (eds) Advances in Combinatorics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30979-3_2

Download citation

Publish with us

Policies and ethics