Skip to main content

An Improved MOPSO with a Crowding Distance Based External Archive Maintenance Strategy

  • Conference paper
Advances in Swarm Intelligence (ICSI 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7331))

Included in the following conference series:

Abstract

For multi-objective optimization algorithms, the maintenance policy of external archive has a great impact on the performance of convergence and solution diversity. Considering the dilemma of large population and external archive, an improved strategy of external archive maintenance based on crowding distance is proposed, which requires less particle numbers and smaller archive size, resulting in the computation cost reduction. Furthermore, the information entropy of gbest is analyzed to emphasize the diversity improvement of non-dominant solutions and well-distribution on the Pareto-optimal front. Numerical experiments of benchmark functions demonstrate the effectiveness and efficiency of proposed multi-objective particle swarm optimization.

Supported by: National Natural Science Foundation (60903005).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of the IEEE International Conference on Neural Networks, pp. 1942–1948 (1995)

    Google Scholar 

  2. Hu, X., Eberhart, R.C.: Multi-objective Optimization using Dynamic Neighborhood Particle Swarm Optimization. In: Proceedings of the IEEE Congress on Evolutionary Computation, vol. 2, pp. 1677–1681 (May 2002)

    Google Scholar 

  3. Hu, X., Eberhart, R.C., Shi, Y.: Particle Swarm with Extended Memory for Multi-objective Optimization. In: Proceedings of the IEEE Swarm Itelligence Symposium, Indianapolis, Indiana, USA, pp. 53–57 (2003)

    Google Scholar 

  4. Parsopoulos, K.E., Vrahatis, M.N.: Particle Swarm Optimization Method in Multi-objective Problem. In: Proceedings of the ACM Symposium on Applied Computing, pp. 603–607 (2002)

    Google Scholar 

  5. Parsopoulos, K.E., Vrahatis, M.N.: Recent Approaches to Global Optimization Problems through Particle Swarm Optimization. Natural Computing 1(2-3), 235–306 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Coello, C.A., Lechuga, M.S.: MOPSO: a proposal for multiple objective particle swarm optimization. In: Evolutionary Computation (2002)

    Google Scholar 

  7. Villalobos-Arias, M., Coello, C.A.: Asymptotic convergence of met-heuristics for Multi-objective optimization problems. Soft Computing 10(11), 1001–1005 (2006)

    Article  MATH  Google Scholar 

  8. Lei, D., Yan, X.-P.: Multi-objective intelligent optimization problems and application, pp. 38–40. Science Press, Beijing (2009)

    Google Scholar 

  9. Li, X.-D.: A Non-Dominated Sorting Particle Swarm Optimizer for Multi-Objective Optimization. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2723, pp. 37–48. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  10. Li, Z.-K., Tan, J.-R., Feng, Y.-X., Fang, H.: Multi-objective particle swarm optimization algorithm based on crowding distance sorting and its application. Computer Integrated Manufacturing Systems 7, 1329–1336 (2008)

    MATH  Google Scholar 

  11. Wu, W., Yan, G.: Dynamic particle swarm algorithm for multi-objective optimization based on crowding distance. Computer Engineering and Design, 1421–1425 (2011)

    Google Scholar 

  12. Yang, S.-X.: Multi-objective particle swarm optimization based on crowding distance. Computer Engineering and Applications, 222–246 (2009)

    Google Scholar 

  13. Berger, J.O.: Statistical decision theory and Bayesian analysis. Spring-Verlag world publishing corporation (1985)

    Google Scholar 

  14. Huang, V.L., Suganthan, P.N., et al.: Multi-objective differential evolution with external archive and harmonic distance-based diversity measure. Technical Report, Nanyang Technological University (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Li, Wx., Zhou, Q., Zhu, Y., Pan, F. (2012). An Improved MOPSO with a Crowding Distance Based External Archive Maintenance Strategy. In: Tan, Y., Shi, Y., Ji, Z. (eds) Advances in Swarm Intelligence. ICSI 2012. Lecture Notes in Computer Science, vol 7331. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30976-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30976-2_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30975-5

  • Online ISBN: 978-3-642-30976-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics