Advertisement

Image Retrieval Based on GA Integrated Color Vector Quantization and Curvelet Transform

  • Yungang Zhang
  • Tianwei Xu
  • Wei Gao
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7331)

Abstract

Color and shape information have been two important image descriptors in Content Based Image Retrieval (CBIR) systems. The focus of this research is to find a method representing images with color and shape information in the way of human visual perception. The image retrieval approach proposed here depends on the color and shape features extracted by color Vector Quantization (VQ) and the Digital Curvelet Transform (DCT), respectively. The extracted color and shape features were combined and weighted by Genetic Algorithm (GA), then used for image similarity measurement. Experimental results show that the GA combined features can bring about improved image retrieval performance.

Keywords

Image retrieval color vector quantization curvelet transform genetic algorithm 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ahalt, S.C., Krishnamurthy, A.K., Chen, P., Melton, D.E.: Competitive learning algorithms for vector quantization. Neural Networks 3, 277–290 (1990)CrossRefGoogle Scholar
  2. 2.
    Arivazhagan, S., Ganesan, L.: Texture classification using wavelet transform. Pattern Recognition Letters 24, 1513–1521 (2003)zbMATHCrossRefGoogle Scholar
  3. 3.
    Candès, E.J., Demanet, L., Donoho, D.L., Ying, L.: Fast discrete curvelet transform. Multiscale Modeling and Simulation 5(3), 861–899 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Goldberg, D.E.: Genetic algorithms: In search, optimization and machine learning. Addison-Wesley (1987)Google Scholar
  5. 5.
    Flickner, M., Sawhney, H., Niblack, W., Ashley, J., Huang, Q., Dom, B., Gorkani, M., Hafner, J., Lee, D., Pettovic, D., Steele, D., Anker, P.: Querying by image and video content: the QBIC system. IEEE Transactions on Computers 25, 23–32 (1995)Google Scholar
  6. 6.
    Gebäck, T., Koumoutsakos, P.: Edge detection in microscopy images using curvelets. BMC Bioinformatics 10(75), 1–14 (2009)Google Scholar
  7. 7.
    Gevers, T., Smeulders, A.: PicToSeek: Combining color and shape invariant features for image retrieval. IEEE Transactions on Image Processing 9, 102–119 (2000)CrossRefGoogle Scholar
  8. 8.
    Qiu, G.: Image coding using a coloured pattern appearance model. In: Visual Communication and Image Processing 2001 (2001)Google Scholar
  9. 9.
    Qiu, G.: Indexing chromatic and achromatic patterns for content-based colour image retrieval. Pattern Recognition 35, 1675–1686 (2002)zbMATHCrossRefGoogle Scholar
  10. 10.
    Jain, A.K., Vailaya, A.: Image retrieval using color and shape. Pattern Recognition 29(8), 1233–1244 (1996)CrossRefGoogle Scholar
  11. 11.
    Jeong, S., Won, C.S., Gray, R.M.: Image retrieval using color histogram generated by gauss mixture vector quantization. Computer Vision and Image Understanding 94, 44–66 (2004)CrossRefGoogle Scholar
  12. 12.
    Holland, J.H.: Adaption in Natural and Artifical Systems. The University of Michigan Press, Ann Arbor (1975)Google Scholar
  13. 13.
    Laaksonen, J., Koskela, M., Oja, E.: PicSOM: self-organizing image retrieval with mpeg-7 content descriptors. IEEE Transactions on Neural Networks 13(4), 841–852 (2002)CrossRefGoogle Scholar
  14. 14.
    Smith, J.R., Chang, S.F.: Tools and techniques for color image retrieval. In: Proc. SPIE Storage and Retrieval for Image and Video Database IV, vol. 2670, pp. 426–437 (1996)Google Scholar
  15. 15.
    Smith, J.R., Chang, S.F.: VisualSeek: a fully automated content-based image query system. In: Proceedings of the ACM Multimedia, pp. 87–98 (1996)Google Scholar
  16. 16.
    Sumana, I.J., Islam, M.M., Zhang, D., Lu, G.: Content based image retrieval using curvelet transform. In: IEEE 10th Workshop on Multimedia Signal Processing, pp. 11–16 (2008)Google Scholar
  17. 17.
    Tsai, C.W., Lee, C.Y., Chiang, M.C., Yang, C.S.: A fast vq codebook generation algorithm via pattern reduction. Pattern Recognition Letters 30, 653–660 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Yungang Zhang
    • 1
    • 2
  • Tianwei Xu
    • 1
  • Wei Gao
    • 3
  1. 1.School of Information ScienceYunnan Normal UniversityKunmingChina
  2. 2.Department of Computer Science & Software EngineeringXi’anJiaoTong-Liverpool UniversitySuzhouChina
  3. 3.Department of MathematicsSoochow UniveristySuzhouChina

Personalised recommendations