Ensemble of Clearing Differential Evolution for Multi-modal Optimization

  • Boyang Qu
  • Jing Liang
  • Ponnuthurai Nagaratnam Suganthan
  • Tiejun Chen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7331)


Multi-modal Optimization refers to finding multiple global and local optima of a function in one single run, so that the user can have a better knowledge about different optimal solutions. Multiple global/local peaks generate extra difficulties for the optimization algorithms. Many niching techniques have been developed in literature to tackle multi-modal optimization problems. Clearing is one of the simplest and most effective methods in solving multi-modal optimization problems. In this work, an Ensemble of Clearing Differential Evolution (ECLDE) algorithm is proposed to handle multi-modal problems. In this algorithm, the population is evenly divided into 3 subpopulations and each of the subpopulations is assigned a set of niching parameters (clearing radius). The algorithms is tested on 12 benchmark multi-modal optimization problems and compared with the Clearing Differential Evolution (CLDE) with single clearing radius as well as a number of commonly used niching algorithms. As shown in the experimental results, the proposed algorithm is able to generate satisfactory performance over the benchmark functions.


Differential evolution evolutionary computation multi-modal optimization niching 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mahfoud, S.W.: Niching methods for genetic algorithms. Ph.D. dissertation, Urbana, IL, USA (1995),
  2. 2.
    Koper, K., Wysession, M.: Multimodal function optimization with a niching genetic algorithm: A seis-mological example. Bulletin of the Seismological Society of America 89, 978–988 (1999)Google Scholar
  3. 3.
    Das, S., Maity, S., Qu, B.-Y., Suganthan, P.N.: Real-parameter evolutionary multimodal optimization — A survey of the state-of-the-art. Swarm and Evolutionary Computation 1(2), 71–88 (2011)CrossRefGoogle Scholar
  4. 4.
    Cavicchio, D.J.: Adaptive search using simulated evolution, Ph.D. dissertation, University of Michigan, Ann Arbor (1970)Google Scholar
  5. 5.
    De Jong, K.A.: An analysis of the behavior of a class of genetic adaptive systems, Ph.D. dissertation, University of Michigan (1975)Google Scholar
  6. 6.
    Mahfoud, S.W.: Crowding and preselection revisited. In: Manner, R., Manderick, B. (eds.) Parallel Problem Solving From Nature 2, pp. 27–36Google Scholar
  7. 7.
    Harik, G.R.: Finding multimodal solutions using restricted tournament selection. In: Proceedings of the Sixth International Conference on Genetic Algorithms. Morgan KaufmannGoogle Scholar
  8. 8.
    Pétrowski, A.: A clearing procedure as a niching method for genetic algorithms. In: Proc. of the IEEE Int. Conf. on Evolutionary Computation, New York, USA, pp. 798–803 (1996)Google Scholar
  9. 9.
    Goldberg, D.E., Richardson, J.: Genetic algorithms with sharing for multimodal function optimization. In: Grefenstette, J. (ed.) Proceedings of the Second International Conference on Genetic Algorithms, pp. 41–49 (1987)Google Scholar
  10. 10.
    Li, J.P., Balazs, M.E., Parks, G.T., Clarkson, P.J.: A species conserving genetic algorithm for multimodal function optimization. Evol. Comput. 10(3), 207–234 (2002)CrossRefGoogle Scholar
  11. 11.
    Zaharie, D.: Extensions of differential evolution algorithms for multimodal optimization. In: Proceedings of SYNASC 2004, 6th International Symposium of Symbolic and Numeric Algorithms for Scientific Computing, pp. 523–534 (2004)Google Scholar
  12. 12.
    Hendershot, Z.: A differential evolution algorithm for automatically discovering multiple global optima in multidimensional, discontinues spaces. In: Proceedings of MAICS 2004, Fifteenth Midwest Artificial Intelligence and Cognitive Sciences Conference, pp. 92–97 (2004)Google Scholar
  13. 13.
    Thomsen, R.: Multi-modal optimization using crowding-based differential evolution. In: Proceedings of the 2004 Congress on Evolutionary Computation, vol. 2, pp. 1382–1389 (2004)Google Scholar
  14. 14.
    Qu, B.Y., Suganthan, P.N.: Modified species-based differential evolution with self –adaptive radius for multi-modal optimization. In: International Conference on Computational Problem Solving (ICCP), China, pp. 326–331 (2010)Google Scholar
  15. 15.
    Storn, R., Price, K.V.: Differential evolution-Asimple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization 11, 341–359 (1995)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Price, K.: An introduction to differential evolution. New Ideas in Optimization, 79–108 (1999)Google Scholar
  17. 17.
    Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation, 67–82 (1997)Google Scholar
  18. 18.
    Yu, E.L., Suganthan, P.N.: Ensemble of niching algorithms. Information Sciences 180(15), 2815–2833 (2010)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Qu, B.Y., Suganthan, P.N.: Constrained Multi-Objective Optimization Algorithm with Ensemble of Constraint Handling Methods. Engineering Optimization 43(4), 403 (2011)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Qu, B.Y., Gouthanan, P., Suganthan, P.N.: Dynamic Grouping Crowding Differential Evolution with Ensemble of Parameters for Multi-modal Optimization. In: Panigrahi, B.K., Das, S., Suganthan, P.N., Dash, S.S. (eds.) SEMCCO 2010. LNCS, vol. 6466, pp. 19–28. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  21. 21.
    Li, X.: Niching without niching parameters: particle swarm optimization using a ring topology. IEEE Transactions on Evolutionary Computation 14 (February 2010)Google Scholar
  22. 22.
    Qu, B.Y., Suganthan, P.N.: Novel Multimodal Problems and Differential Evolution with Ensemble of Restricted Tournament Selection. In: IEEE Congress on Evolutionary Computation, Barcelona, Spain, pp. 3480–3486 (July 2010)Google Scholar
  23. 23.
    Li, X.: Efficient differential evolution using speciation for multimodal function optimization. In: Proceedings of the Conference on Genetic and Evolutionary Computation, Washington DC, USA, pp. 873–880 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Boyang Qu
    • 1
    • 3
  • Jing Liang
    • 2
  • Ponnuthurai Nagaratnam Suganthan
    • 3
  • Tiejun Chen
    • 2
  1. 1.School of Electric and Information EngineeringZhongyuan University of TechnologyChina
  2. 2.School of Electrical EngineeringZhengzhou UniversityChina
  3. 3.School of Electrical and Electronic EngineeringNanyang Technological UniversitySingapore

Personalised recommendations