Skip to main content

A Danger Feature Based Negative Selection Algorithm

  • Conference paper
Advances in Swarm Intelligence (ICSI 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7331))

Included in the following conference series:

Abstract

This paper proposes a danger feature based negative selection algorithm (DFNSA). The DFNSA divides the danger feature space into four parts, and reserves the information of danger features to the utmost extent, laying a good foundation for measuring the danger of a sample. In order to incorporate the DFNSA into the procedure of malware detection, a DFNSA-based malware detection (DFNSA-MD) model is proposed. It maps a sample into the whole danger feature space by using the DFNSA. The danger of a sample is measured precisely in this way and used to classify the sample. Eight groups of experiments on three public malware datasets are exploited to evaluate the effectiveness of the proposed DFNSA-MD model using cross validation. Comprehensive experimental results suggest that the DFNSA is able to reserve as much information of danger features as possible, and the DFNSA-MD model is effective to detect unseen malware. It outperforms the traditional negative selection algorithm based and the negative selection algorithm with penalty factor based malware detection models in all the experiments for about 5.34% and 0.67% on average, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Forrest, S., Perelson, A.S., Allen, L., Rajesh, C.: Self-nonself discrimination in a computer. In: IEEE Computer Society Symposium on Research in Security and Privacy, Oakland, pp. 202–212 (1994)

    Google Scholar 

  2. Forrest, S., Hofmeyr, S.A., Somayaji, A., Longstaff, T.A.: A sense of self for Unix processes. In: IEEE Symposium on Security and Privacy, Oakland, pp. 120–128 (1996)

    Google Scholar 

  3. Somayaji, A., Hofmeyer, S., Forrest, S.: Principle of a computer immune system. In: New Security Paradigms Workshop, Cumbria, pp. 75–82 (1998)

    Google Scholar 

  4. Matzinger, P.: The danger model: a renewed sense of self. Science’s STKE 296(5566), 301–305 (2002)

    Google Scholar 

  5. Aickelin, U., Bentley, P., Cayzer, S., Kim, J., McLeod, J.: Danger Theory: The Link between AIS and IDS? In: Timmis, J., Bentley, P.J., Hart, E. (eds.) ICARIS 2003. LNCS, vol. 2787, pp. 147–155. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  6. Ji, Z., Dasgupta, D.: Real-Valued Negative Selection Algorithm with Variable-Sized Detectors. In: Deb, K., et al. (eds.) GECCO 2004, Part I. LNCS, vol. 3102, pp. 287–298. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  7. Li, Z., Liang, Y.W., Wu, Z.J., Tan, C.Y.: Immunity based virus detection with process call arguments and user feedback. In: Bio-Inspired Models of Network, Information and Computing Systems, Budapest, pp. 57–64 (2007)

    Google Scholar 

  8. Li, T.: Dynamic detection for computer virus based on immune system. Sci. China Inf. Sci. 39(4), 422–430 (2009) (in Chinese)

    Google Scholar 

  9. Wang, W., Zhang, P.T., Tan, Y., He, X.G.: A hierarchical artificial immune model for virus detection. In: International Conference on Computational Intelligence and Security, Beijing, pp. 1–5 (2009)

    Google Scholar 

  10. Wang, W., Zhang, P., Tan, Y.: An Immune Concentration Based Virus Detection Approach Using Particle Swarm Optimization. In: Tan, Y., Shi, Y., Tan, K.C. (eds.) ICSI 2010. LNCS, vol. 6145, pp. 347–354. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  11. Zhang, P.T., Wang, W., Tan, Y.: A malware detection model based on a negative selection algorithm with penalty factor. Sci. China Inf. Sci. 53(12), 2461–2471 (2010)

    Article  Google Scholar 

  12. LibSVM, http://www.csie.ntu.edu.tw/~cjlin/libsvm/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhang, P., Tan, Y. (2012). A Danger Feature Based Negative Selection Algorithm. In: Tan, Y., Shi, Y., Ji, Z. (eds) Advances in Swarm Intelligence. ICSI 2012. Lecture Notes in Computer Science, vol 7331. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30976-2_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30976-2_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30975-5

  • Online ISBN: 978-3-642-30976-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics