Advertisement

A Novel Simple Candidate Set Method for Symmetric TSP and Its Application in MAX-MIN Ant System

  • Miao Deng
  • Jihong Zhang
  • Yongsheng Liang
  • Guangming Lin
  • Wei Liu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7331)

Abstract

Traveling Salesman Problem (TSP) is a kind of typical NP problem and has been extensively researched in combinatorial optimization. For solving it more effectively, candidate set is used in many algorithms in order to limit the selecting range when choosing next city to move, such as in Ant Systems, or to initialize a local optimum solution, such as in Lin-Kernighan Heuristic (LKH) algorithm. A novel simple method for generating candidate set is proposed in this paper and applied into MAX-MIN Ant System (MMAS) for symmetric TSP problem. Experimental results show that it has better performance than other Ant Systems including MMAS. Moreover, this method can be used in other algorithms for symmetric TSP problem.

Keywords

Symmetric TSP Ant Colony Optimization MMAS Candidate Set 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Marco, D., Vittorio, M., Alberto, C.: Ant System: Optimization by a Colony of Cooperating Agents. IEEE Transactions on Systems, Man, and Cybernetics–Part B 26(1), 1–13 (1996)Google Scholar
  2. 2.
    Akira, H., Syuhei, M., Takumi, I., Tetsuyuki, T.: Ant Colony Optimization Using Exploratory Ants for Constructing Partial Solutions. In: IEEE Congress on Evolutionary Computation (CEC), pp. 1–7 (2010)Google Scholar
  3. 3.
    Ayan, A., Deepyaman, M., Aritra, B., Janarthanan, R., Amit, K.: Extension of Max-Min Ant System with Exponential Pheromone Deposition Rule. In: 16th IEEE International Conference on Advanced Computing and Communication, pp. 1–8 (2008)Google Scholar
  4. 4.
    Zhaojun, Z., Zuren, F.: A Novel Max-Min Ant System Algorithm for Traveling. In: IEEE International Conference on Intelligent Computing and Intelligent Systems, ICIS, pp. 508–511 (2009)Google Scholar
  5. 5.
    Thomas, S., Holger, H.H.: MAX–MIN Ant System. Future Generation Computer Systems 16, 889–914 (2000)CrossRefGoogle Scholar
  6. 6.
  7. 7.
    Keld, H.: General k-opt submoves for the Lin–Kernighan TSP Heuristic. Mathematical Programming Computation 1, 119–163 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Randall, M., Montgomery, J.: Candidate Set Strategies for Ant Colony Optimisation. In: Dorigo, M., Di Caro, G.A., Sampels, M. (eds.) ANTS 2002. LNCS, vol. 2463, pp. 243–249. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  9. 9.
    Othman, Z.A., Rais, H.M., Hamdan, A.R.: Strategies DACS3 Increasing its Performances. European Journal of Scientific Research 27, 488–499 (2009)Google Scholar
  10. 10.
    Rais, H.M., Othman, Z.A., Hamdan, A.R.: Reducing Iteration Using Candidate List. In: International Symposium on Information Technology (ITSim 2008), vol. 3, pp. 1–8. IEEEXplore (2008)Google Scholar
  11. 11.
    Chaoxue, W., Duwu, C., Yikun, Z., Zhurong, W.: A Novel Ant Colony System Based on Delauney Triangulation and Self-adaptive Mutation for TSP. International Journal of Information Technology 12(3), 89–99 (2006)Google Scholar
  12. 12.

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Miao Deng
    • 1
  • Jihong Zhang
    • 2
  • Yongsheng Liang
    • 2
  • Guangming Lin
    • 2
  • Wei Liu
    • 2
  1. 1.School of Information EngineeringShenzhen UniversityShenzhenChina
  2. 2.Shenzhen Key Lab of Visual Media Processing and TransmissionShenzhen Institute of Information TechnologyShenzhenChina

Personalised recommendations