Skip to main content

The Production and Protection of Nectars

  • Chapter
  • First Online:
Progress in Botany

Part of the book series: Progress in Botany ((BOTANY,volume 74))

Abstract

Nectar secretion serves two important mutualisms. Floral nectar (FN) mediates pollination whereas extrafloral nectar (EFN) serves the indirect defence against herbivores. Research over the last decade has focused on the anti-microbial protection of nectars. The Nectar Redox Cycle consists of several nectar proteins (nectarins) in FN of ornamental tobacco and produces reactive oxygen species that keep the nectar free of microbes. Hydrolytic enzymes such as chitinases, glucanases and other pathogenesis-related (PR) proteins serve the same protective function in FN and EFN of different species, although via different biochemical mechanisms. By contrast, little is known about how nectaries are formed, where nectar components are produced and how nectar flow is controlled. Genes with a central role in flower development and nectary formation are CRABS CLAW (CRC) and BLADE-ON-PETIOLE (BOP) 1 and 2, but more studies are required to understand the genetic control of nectary formation and the mechanisms by which plants control nectar flow and composition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adler LS (2000) The ecological significance of toxic nectar. Oikos 91:409–420

    Google Scholar 

  • Adler LS, Irwin RE (2005) Ecological costs and benefits of defenses in nectar. Ecology 86:2968–2978

    Google Scholar 

  • Agthe C (1951) Über die physiologische Herkunft des Pflanzennektars. Ber schweiz Bot Ges 61:240–274

    CAS  Google Scholar 

  • Alm J, Ohnmeiss T, Lanza J, Vriesenga L (1990) Preference of cabbage white butterflies and honey bees for nectar that contains amino acids. Oecologia 84:53–57

    Google Scholar 

  • Baker HG (1977) Non-sugar chemical constituents of nectar. Apidologie 8:349–356

    Google Scholar 

  • Baker HG, Baker I (1973) Amino acids in nectar and their evolutionary significance. Nature 241:543–545

    CAS  Google Scholar 

  • Baker HG, Baker I (1982) Chemical constituents of nectar in relation to pollination mechanisms and phylogeny. In: Nitecki M (ed) Biochemical aspects of evolutionary biology. University of Chicago Press, Chicago, IL, pp 131–171

    Google Scholar 

  • Baker HG, Baker I (1983) A brief historical review of the chemistry of floral nectar. Columbia University Press, New York

    Google Scholar 

  • Baker HG, Opler PA, Baker I (1978) A comparison of the amino acid complements of floral and extrafloral nectars. Bot Gaz 139:322–332

    CAS  Google Scholar 

  • Baum SF, Eshed Y, Bowman JL (2001) The Arabidopsis nectary is an ABC-independent floral structure. Development 128:4657–4667

    PubMed  CAS  Google Scholar 

  • Bentley BL (1977) Extrafloral nectaries and protection by pugnacious bodyguards. Annu Rev Ecol Syst 8:407–427

    CAS  Google Scholar 

  • Bernadello G (2007) A systematic survey of floral nectaries. In: Nicolson SW, Nepi M, Pacini E (eds) Nectaries and nectar. Springer, Dordrecht

    Google Scholar 

  • Bertazzini M, Medrzycki P, Bortolotti L, Maistrello L, Forlani G (2010) Amino acid content and nectar choice by forager honeybees (Apis mellifera L.). Amino Acids 39:315–318

    PubMed  CAS  Google Scholar 

  • Blüthgen N, Fiedler K (2004) Preferences for sugars and amino acids and their conditionality in a diverse nectar-feeding ant community. J Anim Ecol 73:155–166

    Google Scholar 

  • Bowman JL, Smyth DR (1999) CRABS CLAW, a gene that regulates carpel and nectary development in Arabidopsis, encodes a novel protein with zinc finger and helix-loop-helix domains. Development 126:2387–2396

    PubMed  CAS  Google Scholar 

  • Brandenburg A (2009) The effect of nectar reduction in Petunia axillaris on foraging and pollination behavior of nocturnal hawkmoths, observed in laboratory and field behavioral assays. PhD, Faculty of Sciences, University of Neuchâtel, Neuchâtel, Switzerland, pp 153

    Google Scholar 

  • Brandenburg A, Dell’Olivo A, Bshary R, Kuhlemeier C (2009) The sweetest thing: advances in nectar research. Curr Opin Plant Biol 12:486–490

    PubMed  Google Scholar 

  • Bubán T, Orosz-Kovacs Z, Farkas A (2003) The nectary as the primary site of infection by Erwinia amylovora (Burr.) Winslow et al.: a mini review. Plant Syst Evol 238:183–194

    Google Scholar 

  • Buxbaum F (1927) Zur Frage des Eiweißgehaltes des Nektars Planta (Berlin) 4:818–821

    Google Scholar 

  • Carter C, Thornburg RW (2000) Tobacco nectarin I: purification and characterization as a germin-like, manganese superoxide dismutase implicated in the defense of floral reproductive tissues. J Biol Chem 275:36726–36733

    PubMed  CAS  Google Scholar 

  • Carter C, Thornburg RW (2004a) Is the nectar redox cycle a floral defense against microbial attack? Trends Plant Sci 9:320–324

    PubMed  CAS  Google Scholar 

  • Carter CJ, Thornburg RW (2004b) Tobacco nectarin III is a bifunctional enzyme with monodehydroascorbate reductase and carbonic anhydrase activities. Plant Mol Biol 54:415–425

    PubMed  CAS  Google Scholar 

  • Carter C, Graham R, Thornburg RW (1999) Nectarin I is a novel, soluble germin-like protein expressed in the nectar of Nicotiana sp. Plant Mol Biol 41:207–216

    PubMed  CAS  Google Scholar 

  • Carter C, Shafir S, Yehonatan L, Palmer RG, Thornburg R (2006) A novel role for proline in plant floral nectars. Naturwissenschaften 93:72–79

    PubMed  CAS  Google Scholar 

  • Carter C, Healy R, O’Tool NM, Saqlan Naqvi SM, Ren G, Park S, Beattie GA, Horner HT, Thornburg RW (2007) Tobacco nectaries express a novel NADPH oxidase implicated in the defense of floral reproductive tissues against microorganisms. Plant Physiol 143:389–399

    PubMed  CAS  Google Scholar 

  • Cawoy V, Kinet JM, Jacquemart AL (2008) Morphology of nectaries and biology of nectar production in the distylous species Fagopyrum esculentum. Ann Bot 102:675–684

    PubMed  Google Scholar 

  • Chamberlain SA, Holland JN (2009) Quantitative synthesis of context dependency in ant-plant protection mutualisms. Ecology 90:2384–2392

    PubMed  Google Scholar 

  • Coen ES, Meyerowitz EM (1991) The war of the whorls: genetic interactions controlling flower development. Nature 353:31–37

    PubMed  CAS  Google Scholar 

  • Corbet SA, Delfosse ES (1984) Honeybees and the nectar of Echium plantagineum L. in south-eastern Australia. Aust J Ecol 9:125–139

    Google Scholar 

  • D’Alessio G, Riordan JF (1997) Ribonucleases: structures and functions. Academic, New York

    Google Scholar 

  • D’Amato F (1984) The role of polyploidy in reproductive organ tissue. In: Johri BM (ed) Embryology of angiosperms. Springer, Heidelberg, pp 519–556

    Google Scholar 

  • Davidson DW, McKey D (1993) The evolutionary ecology of symbiotic ant-plant relationships. J Hymenoptera Res 2:13–83

    Google Scholar 

  • Davis AR, Peterson RL, Shuel RW (1988) Vasculature and ultrastructure of the floral and stipular nectaries of Vicia faba (Leguminosae). Can J Bot 66:1435–1448

    Google Scholar 

  • de la Barrera E, Nobel P (2004) Nectar: properties, floral aspects, and speculations on origin. Trends Plant Sci 9:65–69

    PubMed  Google Scholar 

  • Durkee LT (1982) The floral and extra-floral nectaries of Passiflora. II. The extra-floral nectary. Am J Bot 69:1420–1428

    Google Scholar 

  • Elias TS (1983) Extrafloral nectaries: their structure and distribution. In: Bentley B, Elias TS (eds) The biology of nectaries. Columbia University Press, New York, NY, pp 174–203

    Google Scholar 

  • Escalante-Pérez M, Heil M (2012) Nectar secretion: its ecological context and physiological regulation. In: Vivanco J, Baluska F (eds) Secretions and exudates in biological systems. Springer, Berlin, pp 187–220

    Google Scholar 

  • Fahn A (1979) Ultrastructure of nectaries in relation to nectar secretion. Am J Bot 66:977–985

    CAS  Google Scholar 

  • Fahn A (1988) Secretory tissues in vascular plants. New Phytol 108:229–257

    Google Scholar 

  • Farkas A, Orosz-Kovacs Z, Deri H, Chauhan SVS (2007) Floral nectaries in some apple and pear cultivars with special reference to bacterial fire blight. Curr Sci 92:1286–1289

    Google Scholar 

  • Fourquin C, Vinauger-Douard M, Fogliani B, Dumas C, Scutt CP (2005) Evidence that CRABS CLAW and TOUSLED have conserved their roles in carpel development since the ancestor of the extant angiosperms. Proc Natl Acad Sci USA 102:4649–4654

    PubMed  CAS  Google Scholar 

  • Frey-Wyssling A, Häusermann E (1960) Deutung der gestaltlosen Nektarien. Ber schweiz Bot Ges 70:150–162

    Google Scholar 

  • Gaffal KP, Heimler W, el-Gammal S (1998) The floral nectary of Digitalis purpurea L., structure and nectar secretion. Ann Bot 81:251–262

    Google Scholar 

  • Gaffal KP, Friedrichs GJ, El-Gammal S (2007) Ultrastructural evidence for a dual function of the phloem and programmed cell death in the floral nectary of Digitalis purpurea. Ann Bot 99:593–607

    PubMed  Google Scholar 

  • Galliot C, Hoballah M, Kuhlemeier C, Stuurman J (2006) Genetics of flower size and nectar volume in Petunia pollination syndromes. Planta 225:203–212

    PubMed  CAS  Google Scholar 

  • Gill FB (1988) Effects of nectar removal on nectar accumulation in flowers of Heliconia imbricata (Heliconiaceae). Biotropica 20:169–171

    Google Scholar 

  • González-Teuber M, Heil M (2009a) Nectar chemistry is tailored for both attraction of mutualists and protection from exploiters. Plant Signal Behav 4:809–813

    PubMed  Google Scholar 

  • González-Teuber M, Heil M (2009b) The role of extrafloral nectar amino acids for the preferences of facultative and obligate ant mutualists. J Chem Ecol 35:459–468

    PubMed  Google Scholar 

  • González-Teuber M, Eilmus S, Muck A, Svatos A, Heil M (2009) Pathogenesis-related proteins protect extrafloral nectar from microbial infestation. Plant J 58:464–473

    PubMed  Google Scholar 

  • González-Teuber M, Pozo MJ, Muck A, Svatos A, Adame-Álvarez RM, Heil M (2010) Glucanases and chitinases as causal agents in the protection of Acacia extrafloral nectar from infestation by phytopathogens. Plant Physiol 152:1705–1715

    PubMed  Google Scholar 

  • Hampton M, Xu WW, Kram BW, Chambers E, Ehrnriter J, Gralewski JH, Joyal T, Carter CJ (2010) Identification of differential gene expression in Brassica rapa nectaries through expressed sequence tag analysis. PLoS One 5:e8782

    PubMed  Google Scholar 

  • Hansen KAI, Wacht S, Seebauer H, Schnuch M (1998) New aspects of chemoreception in flies. Ann NY Acad Sci 855:143–147

    PubMed  CAS  Google Scholar 

  • Heil M (2004) Induction of two indirect defences benefits Lima bean (Phaseolus lunatus, Fabaceae) in nature. J Ecol 92:527–536

    Google Scholar 

  • Heil M (2008) Indirect defence via tritrophic interactions. New Phytol 178:41–61

    PubMed  CAS  Google Scholar 

  • Heil M (2011) Nectar: generation, regulation and ecological functions. Trends Plant Sci 16:191–200

    PubMed  CAS  Google Scholar 

  • Heil M, McKey D (2003) Protective ant-plant interactions as model systems in ecological and evolutionary research. Annu Rev Ecol Evol Syst 34:425–453

    Google Scholar 

  • Heil M, Fiala B, Baumann B, Linsenmair KE (2000) Temporal, spatial and biotic variations in extrafloral nectar secretion by Macaranga tanarius. Funct Ecol 14:749–757

    Google Scholar 

  • Heil M, Koch T, Hilpert A, Fiala B, Boland W, Linsenmair KE (2001) Extrafloral nectar production of the ant-associated plant, Macaranga tanarius, is an induced, indirect, defensive response elicited by jasmonic acid. Proc Natl Acad Sci USA 98:1083–1088

    PubMed  CAS  Google Scholar 

  • Heil M, Greiner S, Meimberg H, Krüger R, Noyer J-L, Heubl G, Linsenmair KE, Boland W (2004) Evolutionary change from induced to constitutive expression of an indirect plant resistance. Nature 430:205–208

    PubMed  CAS  Google Scholar 

  • Heil M, Rattke J, Boland W (2005) Post-secretory hydrolysis of nectar sucrose and specialization in ant/plant mutualism. Science 308:560–563

    PubMed  CAS  Google Scholar 

  • Heil M, González-Teuber M, Clement LW, Kautz S, Verhaagh M, Silva Bueno JC (2009) Divergent investment strategies of Acacia myrmecophytes and the coexistence of mutualists and exploiters. Proc Natl Acad Sci USA 106:18091–18096

    PubMed  CAS  Google Scholar 

  • Herrera CM, Pozo MI (2010) Nectar yeasts warm the flowers of a winter-blooming plant. Proc Roy Soc Lond B 277:1827–1834

    Google Scholar 

  • Herrera CM, De Vega C, Canto A, Pozo MI (2009) Yeasts in floral nectar: a quantitative survey. Ann Bot 103:1415–1423

    PubMed  Google Scholar 

  • Herrera CM, Canto A, Pozo MI, Bazaga P (2010) Inhospitable sweetness: nectar filtering of pollinator-borne inocula leads to impoverished, phylogenetically clustered yeast communities. Proc Roy Soc B Biol Sci 277:747–754

    Google Scholar 

  • Herrera CM, Pozo MI, Bazaga P (2012) Jack of all nectars, master of most: DNA methylation and the epigenetic basis of niche width in a flower-living yeast. Mol Ecol 21(11):2602–2616

    PubMed  CAS  Google Scholar 

  • Hilder VA, Powell KS, Gatehouse AMR, Gatehouse JA, Gatehouse LN, Shi Y, Hamilton WDO, Merryweather A, Newell CA, Timans JC, Peumans WJ, van Damme E, Boulter D (1995) Expression of snowdrop lectin in transgenic tobacco plants results in added protection against aphids. Transgenic Res 4:18–25

    CAS  Google Scholar 

  • Hillwig MS, Liu X, Liu G, Thornburg RW, MacIntosh GS (2010) Petunia nectar proteins have ribonuclease activity. J Exp Bot 61:2951–2965

    PubMed  CAS  Google Scholar 

  • Hillwig MS, Kanobe C, Thornburg RW, MacIntosh GC (2011) Identification of S-RNase and peroxidase in petunia nectar. J Plant Physiol 168:734–738

    PubMed  CAS  Google Scholar 

  • Hong J, Choi H, Hwang I, Kim D, Kim N, Choi D, Kim Y, Hwang B (2008) Function of a novel GDSL-type pepper lipase gene, CaGLIP1, in disease susceptibility and abiotic stress tolerance. Planta 227:539–558

    PubMed  CAS  Google Scholar 

  • Ivanoff SS, Keitt GW (1941) Relations of nectar concentration to growth of Erwinia amylovora and fire blight infection of apple and pear blossoms. J Agric Res 62:0733–0743

    CAS  Google Scholar 

  • Johnson SD, Nicolson SW (2008) Evolutionary associations between nectar properties and specificity in bird pollination systems. Biol Lett 4:49–52

    PubMed  Google Scholar 

  • Johnson SD, Hargreaves AL, Brown M (2006) Dark, bitter-tasting nectar functions as a filter of flower visitors in a bird-pollinated plant. Ecology 87:2709–2716

    PubMed  Google Scholar 

  • Kaczorowski RL, Juenger TE, Holtsford TR (2008) Heritability and correlation structure of nectar and floral morphology traits in Nicotiana alata. Evolution 62:1738–1750

    PubMed  Google Scholar 

  • Keitt GW, Ivanoff SS (1941) Transmission of fire blight by bees and its relation to nectar concentration of apple and pear blossoms. J Agric Res 62:0745–0753

    CAS  Google Scholar 

  • Kessler D, Baldwin IT (2007) Making sense of nectar scents: the effects of nectar secondary metabolites on floral visitors of Nicotiana attenuata. Plant J 49:840–854

    PubMed  CAS  Google Scholar 

  • Kessler D, Gase K, Baldwin IT (2008) Field experiments with transformed plants reveal the sense of floral scents. Science 321:1200–1202

    PubMed  CAS  Google Scholar 

  • Kirchoff BK, Kennedy H (1985) Foliar, non-structural nectaries in the Marantaceae. Can J Bot 63:1785–1788

    Google Scholar 

  • Kost C, Heil M (2005) Increased availability of extrafloral nectar reduces herbivory in Lima bean plants (Phaseolus lunatus, Fabaceae). Basic Appl Ecol 6:237–248

    Google Scholar 

  • Kost C, Heil M (2008) The defensive role of volatile emission and extrafloral nectar secretion for Lima bean in nature. J Chem Ecol 34:2–13

    CAS  Google Scholar 

  • Kram BW, Bainbridge EA, Perera M, Carter C (2008) Identification, cloning and characterization of a GDSL lipase secreted into the nectar of Jacaranda mimosifolia. Plant Mol Biol 68:173–183

    PubMed  CAS  Google Scholar 

  • Kram BW, Xu WW, Carter CJ (2009) Uncovering the Arabidopsis thaliana nectary transcriptome: investigation of differential gene expression in floral nectariferous tissues. BMC Plant Biol 9:92

    PubMed  Google Scholar 

  • Kromer T, Kessler M, Lohaus G, Schmidt-Lebuhn AN (2008) Nectar sugar composition and concentration in relation to pollination syndromes in Bromeliaceae. Plant Biol 10:502–511

    PubMed  CAS  Google Scholar 

  • Lach L, Hobbs RJ, Majer JD (2009) Herbivory-induced extrafloral nectar increases native and invasive ant worker survival. Popul Ecol 51:237–243

    Google Scholar 

  • Lanza J (1991) Response of fire ants (Formicidae: Solenopsis invicta and S. geminata) to artificial nectars with amino acids. Ecol Entomol 16:203–210

    Google Scholar 

  • Lanza J, Krauss BR (1984) Detection of amino acids in artificial nectars by two tropical ants, Leptothorax and Monomorium. Oecologia 63:423–425

    Google Scholar 

  • Lee JY, Baum SF, Alvarez J, Patel A, Chitwood DH, Bowman JL (2005a) Activation of CRABS CLAW in the nectaries and carpels of Arabidopsis. Plant Cell 17:25–36

    PubMed  CAS  Google Scholar 

  • Lee JY, Baum SF, Oh SH, Jiang CZ, Chen JC, Bowman JL (2005b) Recruitment of CRABS CLAW to promote nectary development within the eudicot clade. Development 132:5021–5032

    PubMed  CAS  Google Scholar 

  • Leiss KA, Klinkhamer PGL (2005a) Genotype by environment interactions in the nectar production of Echium vulgare. Funct Ecol 19:454–459

    Google Scholar 

  • Leiss KA, Klinkhamer PGL (2005b) Spatial distribution of nectar production in a natural Echium vulgare population: implications for pollinator behaviour. Basic Appl Ecol 6:317–324

    Google Scholar 

  • Leiss KA, Vrieling K, Klinkhamer PGL (2004) Heritability of nectar production in Echium vulgare. Heredity 92:446–451

    PubMed  CAS  Google Scholar 

  • Limburg DD, Rosenheim JA (2001) Extrafloral nectar consumption and its influence on survival and development of an omnivorous predator, larval Chrysoperla plorabunda (Neuroptera: Chrysopidae). Environ Entomol 30:595–604

    Google Scholar 

  • Liu G, Thornburg RW (2012) Knockdown of MYB305 disrupts nectary starch metabolism and floral nectar production. Plant J 70(3):377–388

    PubMed  CAS  Google Scholar 

  • Liu GY, Ren G, Guirgis A, Thornburg RW (2009) The MYB305 transcription factor regulates expression of nectarin genes in the ornamental tobacco floral nectary. Plant Cell 21:2672–2687

    PubMed  CAS  Google Scholar 

  • Lüttge U (1961) Über die Zusammensetzung des Nektars und den Mechanismus seiner Sekretion. I. Planta 56:189–212

    Google Scholar 

  • Luttge U, Stichler W, Ziegler H (1985) Isotope ratios (δ13C and δD) of nectar in comparison to tissue in C3 and CAM plants. Isr J Bot 34:103–112

    Google Scholar 

  • Martínez del Rio C (1990) Dietary, phylogenetic, and ecological correlates of intestinal sucrase and maltase activity in birds. Physiol Zool 63:987–1011

    Google Scholar 

  • McKim SM, Stenvik GE, Butenko MA, Kristiansen W, Cho SK, Hepworth SR, Aalen RB, Haughn GW (2008) The BLADE-ON-PETIOLE genes are essential for abscission zone formation in Arabidopsis. Development 135:1537–1546

    PubMed  CAS  Google Scholar 

  • Mitchell RJ (2004) Heritability of nectar traits: why do we know so little? Ecology 85:1527–1533

    Google Scholar 

  • Naqvi SMS, Harper A, Carter C, Ren G, Guirgis A, York W-S, Thornburg RW (2005) Nectarin IV, a potent endoglucanase inhibitor secreted into the nectar of ornamental tobacco plants. Isolation, cloning and characterization. Plant Physiol 139:1389–1400

    PubMed  CAS  Google Scholar 

  • Neiland MRM, Wilcock CC (1998) Fruit set, nectar reward, and rarity in the Orchidaceae. Am J Bot 85:1657–1671

    PubMed  CAS  Google Scholar 

  • Nepi M, Stpiczyńska M (2008) The complexity of nectar: secretion and resorption dynamically regulate nectar features. Naturwissenschaften 95:177–184

    PubMed  CAS  Google Scholar 

  • Nepi M, Ciampolini F, Pacini E (1996) Development and ultrastructure of Cucurbita pepo nectaries of male flowers. Ann Bot 78:95–104

    Google Scholar 

  • Nepi M, Guarnieri M, Artese D, Cresti L, Pacini E, Stpiczyńsa M (2007) Dynamics of nectar: new insights from Cucurbita pepo flowers. In: Gardner CAC, Harris MA, Hellmich RW, Horner HT, Nason JD, Palmer RG, Tabke JJ, Thornburg RW, Widrlechner MP (eds) 9th International pollination symposium on plant-pollinator relationships. Iowa State University, Ames, pp 34–35

    Google Scholar 

  • Nepi M, von Aderkas P, Wagner R, Mugnaini S, Coulter A, Pacini E (2009) Nectar and pollination drops: how different are they? Ann Bot 104:205–219

    PubMed  CAS  Google Scholar 

  • Nepi M, Bini L, Bianci L, Puglia M, Abate M, Cai G (2011a) Xylan-degrading enzymes in male and female flower nectar of Cucurbita pepo. Ann Bot 108:521–527

    PubMed  CAS  Google Scholar 

  • Nepi M, Cresti L, Guarnieri M, Pacini E (2011b) Dynamics of nectar production and nectar homeostasis in male flowers of Cucurbita pepo L. Int J Plant Sci 172:183–190

    Google Scholar 

  • Ness JH (2006) A mutualism’s indirect costs: the most aggressive plant bodyguards also deter pollinators. Oikos 113:506–514

    Google Scholar 

  • Nicolson SW, Nepi M, Pacini E (2007) Nectaries and nectar. Springer, Dordrecht

    Google Scholar 

  • O’Dowd DJ (1979) Foliar nectar production and ant activity on a neotropical tree, Ochroma pyramidale. Oecologia 43:233–248

    Google Scholar 

  • Oh IS, Park AR, Bae MS, Kwon SJ, Kim YS, Lee JE, Kang NY, Lee S, Cheong H, Park OK (2005) Secretome analysis reveals an Arabidopsis lipase involved in defense against Alternaria brassicicola. Plant Cell 17:2832–2847

    PubMed  CAS  Google Scholar 

  • Pacini E, Nepi M, Vesprini JL (2003) Nectar biodiversity: a short review. Plant Syst Evol 238:7–21

    CAS  Google Scholar 

  • Park S, Thornburg RW (2009) Biochemistry of nectar proteins. J Plant Biol 52:27–34

    Google Scholar 

  • Pate JS, Peoples MB, Storer PJ, Atkins CA (1985) The extrafloral nectaries of cowpea (Vigna unguiculata (L.) Walp.) II. Nectar composition, origin of nectar solutes, and nectary functioning. Planta 166:28–38

    CAS  Google Scholar 

  • Pederson MW, Lefevre CW, Wiebe HH (1958) Absorption of C14 labelled sucrose by alfalfa nectaries. Science 127:758–759

    CAS  Google Scholar 

  • Peng YB, Li YQ, Hao YJ, Xu ZH, Bai SN (2004) Nectar production and transportation in the nectaries of the female Cucumis sativus L. flower during anthesis. Protoplasma 224:71–78

    PubMed  CAS  Google Scholar 

  • Petanidou T, Van Laere A, Ellis WN, Smets E (2006) What shapes amino acid and sugar composition in Mediterranean floral nectars? Oikos 115:155–169

    CAS  Google Scholar 

  • Peumans WJ, Smeets K, van Nerum K, van Leuven F, van Damme EJM (1997) Lectin and alliinase are the predominant proteins in nectar from leek (Allium porrum L.) flowers. Planta 201:298–302

    PubMed  CAS  Google Scholar 

  • Potter CF, Bertin RI (1988) Amino acids in artificial nectar: feeding preferences of the flesh fly Sarcophaga bullata. Am Midl Nat 120:156–162

    Google Scholar 

  • Prince RC, Gunson DE (1987) Superoxide production by neutrophils. Trends Biochem Sci 12:86–87

    CAS  Google Scholar 

  • Pulice CE, Packer AA (2008) Simulated herbivory induces extrafloral nectary production in Prunus avium. Funct Ecol 22:801–807

    Google Scholar 

  • Pyke GH (1991) What does it cost a plant to produce floral nectar? Nature 350:58–59

    Google Scholar 

  • Rabimkov A, X-z Z, Grafi G, Galili G, Mirelman D (1994) Alliin lyase (Alliinase) from garlic (Allium sativum). Appl Biochem Biotechnol 48:149–171

    Google Scholar 

  • Radhika V, Kost C, Bartram S, Heil M, Boland W (2008) Testing the optimal defence hypothesis for two indirect defences: extrafloral nectar and volatile organic compounds. Planta 228:449–457

    PubMed  CAS  Google Scholar 

  • Radhika V, Kost C, Boland W, Martin Heil M (2010) The role of jasmonate signalling in floral nectar secretion. PLoS One 5:e9265

    PubMed  Google Scholar 

  • Raguso RA (2004) Why are some floral nectars scented? Ecology 85:1486–1494

    Google Scholar 

  • Rahbé Y, Sauvion N, Febvay G, Peumans WJ, Gatehouse AMR (1995) Toxicity of lectins and processing of ingested proteins in the pea aphid Acyrthosiphon pisum. Entomol Exp Appl 76:143–155

    Google Scholar 

  • Ren G, Healy RA, Horner HT, Martha GJ, Thornburg RW (2007a) Expression of starch metabolic genes in the developing nectaries of ornamental tobacco plants. Plant Sci 173:621–637

    CAS  Google Scholar 

  • Ren G, Healy RA, Klyne AM, Horner HT, James MG, Thornburg RW (2007b) Transient starch metabolism in ornamental tobacco floral nectaries regulates nectar composition and release. Plant Sci 173:277–290

    CAS  Google Scholar 

  • Roitsch T, Balibrea ME, Hofmann M, Proels R, Sinha AK (2003) Extracellular invertase: key metabolic enzyme and PR protein. J Exp Bot 54:513–524

    PubMed  CAS  Google Scholar 

  • Röse USR, Lewis J, Tumlinson JH (2006) Extrafloral nectar from cotton (Gossypium hirsutum) as a food source for parasitic wasps. Funct Ecol 20:67–74

    Google Scholar 

  • Rudgers JA (2004) Enemies of herbivores can shape plant traits: Selection in a facultative ant-plant mutualism. Ecology 85:192–205

    Google Scholar 

  • Ruhlmann JM, Kram BW, Carter CJ (2010) CELL WALL INVERTASE 4 is required for nectar production in Arabidopsis. J Exp Bot 61:395–404

    PubMed  CAS  Google Scholar 

  • Sasu MA, Seidl-Adams I, Wall K, Winsor JA, Stephenson AG (2010) Floral transmission of Erwinia tracheiphila by cucumber beetles in a wild Cucurbita pepo. Environ Entomol 39:140–148

    PubMed  CAS  Google Scholar 

  • Shiraishi A, Kuwabara M (1970) The effects of amino acids on the labellar hair chemosensory cells of the fly. J Gen Physiol 56:768–782

    PubMed  CAS  Google Scholar 

  • Sobrinho TG, Schoereder JH, Rodrigues LL, Collevatti RG (2002) Ant visitation (Hymenoptera: Formicidae) to extrafloral nectaries increases seed set and seed viability in the tropical weed Triumfetta semitriloba. Sociobiology 39:353–368

    Google Scholar 

  • Stephenson AG (1982) Iridoid glycosides in the nectar of Catalpa specisoa are unpalatable to nectar thieves. J Chem Ecol 8:1025–1034

    CAS  Google Scholar 

  • Stpiczyńska M (2003) Floral longevity and nectar secretion of Platanthera chlorantha (Custer) Rchb. (Orchidaceae). Ann Bot 92:191–197

    PubMed  Google Scholar 

  • Stpiczyńska M, Milanesi C, Faleri C, Cresti M (2005) Ultrastructure of the nectar spur of Platanthera chlorantha (Custer) Rchb. (Orchidaceae) during successive stages of nectar secretion. Act Biol Cracov Ser Bot 47:111–119

    Google Scholar 

  • Sturm A, Tang GQ (1999) The sucrose-cleaving enzymes of plants are crucial for development, growth and carbon partitioning. Trends Plant Sci 4:401–407

    PubMed  Google Scholar 

  • Stuurman J, Hoballah ME, Broger L, Moore J, Basten C, Kuhlemeier C (2004) Dissection of floral pollination syndromes in Petunia. Genetics 168:1585–1599

    PubMed  CAS  Google Scholar 

  • Terry BR, Robards AW (1987) Hydrodynamic radius alone governs the mobility of molecules through plasmodesmata. Planta 171:145–157

    CAS  Google Scholar 

  • Thornburg RW (2007) Molecular biology of the Nicotiana floral nectary. In: Nicolson SW, Nepi M, Pacini E (eds) Nectaries and nectar. Springer, Heidelberg, pp 265–287

    Google Scholar 

  • Tilman D (1978) Cherries, ants and tent caterpillars: timing of nectar production in relation to susceptibility of caterpillars to ant predation. Ecology 59:686–692

    Google Scholar 

  • Van Loon LC (1999) Occurrence and properties of plant pathogenesis-related proteins. In: Datta SK, Muthukrishnan S (eds) Pathogenesis-related proteins in plants. CRC Press, Boca Raton, pp 1–19

    Google Scholar 

  • Van Loon LC, Rep M, Pieterse CMJ (2006) Significance of inducible defense-related proteins in infected plants. Annu Rev Phytopathol 44:135–162

    PubMed  Google Scholar 

  • Vassilyev AE (2010) On the mechanisms of nectar secretion: revisited. Ann Bot 105:349–354

    PubMed  CAS  Google Scholar 

  • Weiss M (2001) Vision and learning in some neglected pollinators. In: Chittka L, Thomson JD (eds) Cognitive ecology of pollination, animal behavior and floral evolution. Cambridge University Press, Cambridge, pp 171–190

    Google Scholar 

  • Wist TJ, Davis AR (2006) Floral nectar production and nectary anatomy and ultrastructure of Echinacea purpurea (Asteraceae). Ann Bot 97:177–193

    PubMed  Google Scholar 

  • Wooley SC, Donaldson JR, Gusse AC, Lindroth RL, Stevens MT (2007) Extrafloral nectaries in aspen (Populus tremuloides): heritable genetic variation and herbivore-induced expression. Ann Bot 100:1337–1346

    PubMed  Google Scholar 

  • Yang W (2011) Nucleases: diversity of structure, function and mechanism. Quart Rev Biophys 44:1–93

    Google Scholar 

  • Zha H-G, Flowers VL, Yang M, Chen L-Y, Sun H (2012) Acidic alpha-galactosidase, the most abundant nectarin in floral nectar of common tobacco (Nicotiana tabacum L.). Ann Bot 109(4):735–745

    PubMed  CAS  Google Scholar 

  • Zhu J, Hu ZH (2002) Cytological studies on the development of sieve element and floral nectary tissue in Arabidopsis thaliana. Acta Bot Sin 44:9–14

    Google Scholar 

  • Ziegler H, Lüttge UE (1959) Über die Resorption von C14 Glutaminsäure durch sezernierende Nektarien. Naturwissenschaften 46:176–177

    CAS  Google Scholar 

  • Zimmermann M (1954) Über die Sekretion saccharosespaltender Transglucosidasen im pflanzlichen Nektar. Experientia (Basel) 15:145–146

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Heil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Escalante-Pérez, M., Heil, M. (2013). The Production and Protection of Nectars. In: Lüttge, U., Beyschlag, W., Francis, D., Cushman, J. (eds) Progress in Botany. Progress in Botany, vol 74. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30967-0_9

Download citation

Publish with us

Policies and ethics