Advertisement

Evo–Devo–Eco and Ecological Stem Species: Potential Repair Systems in the Planetary Biosphere Crisis

  • Ulrich LüttgeEmail author
  • Mario L. Garbin
  • Fabio R. Scarano
Chapter
Part of the Progress in Botany book series (BOTANY, volume 74)

Abstract

We draw on well-established domains of the biology of evolution (EVO), development (DEVO), and ecology (ECO), particularly of plants, to develop the new concept of “stem species” based on “EVO–DEVO–ECO.” In EVO the evolutionary theory of punctuated equilibrium of niles eldredge and stephen jay gould is thought provoking. These authors make use of spandrels, exaptations, and functional shifts to explain interruptions of stasis by punctuated speciation. In DEVO it is epigenetics where environment-induced chromatin methylations constitute heritable memories of experienced stress. In addition, spandrels, exaptations, and functional shifts shape the phenotypes emerging from reading the genome information. By feedback of development through the evolutionary selection of phenotypes, EVO–DEVO is more than the evolution of development. In ECO the thoughts dwell on the ecological impacts on development of phenotypes as well as the environmental pressure causing selection in evolution. EVO, DEVO, and ECO are nodes of a network with strong interactions between them. The “stem species” idea is issued by comparison with stem cells. In analogy to stem cells in organisms, “stem species” in ecosystems have multipotency and they fulfill repair functions in deteriorating and destroyed habitats. “Stem species” differ from invaders, nurse species, and pioneer species. This is exemplified. “Stem species” may strengthen optimism regarding self-repair and sustainability of the biosphere on Earth in a current time of extraordinarily irritating global changes.

Keywords

Stem Cell Pioneer Species Soil Crust Ecosystem Engineer Mammalian Stem Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgement

We thank Manfred Kluge, Darmstadt, and an anonymous reviewer for very valuable comments on the manuscript.

References

  1. Adams KL (2010) Dandelions ‘remember’ stress: heritable stress-induced methylation patterns. New Phytol 185:867–868PubMedCrossRefGoogle Scholar
  2. Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Watter P (2004) Molecular biology of the cell, 4th edn. Taylor and Francis, LondonGoogle Scholar
  3. Barthlott W, Gröger A, Porembski S (1993) Some remarks on the vegetation of tropical inselbergs: diversity and ecological differentiation. Biogeographica 69:105–124Google Scholar
  4. Belnap J, Lange OL (eds) (2001) Biological soil crusts: structure, function, and management. Ecol Stud 150: 1–503Google Scholar
  5. Bird A (2002) DNA methylation patterns and epigenetic memory. Genes Dev 16:6–21PubMedCrossRefGoogle Scholar
  6. Bond DM, Finnegan EJ (2007) Passing the message on: inheritance of epigenetic traits. Trends Plant Sci 12:211–216PubMedCrossRefGoogle Scholar
  7. Bozelli RL, Esteves FA, Roland F (2000) Mitigacão do impacto: passado, presente e futuro. In: Bozelli RL, Esteves FA, Roland F (eds) Lago Batata—Impacto e Recuperacão de um Ecossistema Amazônico. UFRJ/SBL, Rio de Janeiro, pp 297–332Google Scholar
  8. Brooker RW, Maestre MT, Callaway RM, Lortie CL, Cavieres LA, Kunstler G, Liancourt P, Tielbörger K, Travis JMJ, Anthelme F, Armas C, Coll L, Corcket E, Delzon S, Forey E, Kikvidze Z, Olofsson J, Pugnaire F, Quiroz CL, Saccone P, Schiffers K, Seifan M, Touzard B, Michalet R (2008) Facilitation in plant communities: the past, the present and the future. J Ecol 96:18–34CrossRefGoogle Scholar
  9. Bruce TJA (2010) Exploiting plant signals in sustainable agriculture. In: Baluška F, Ninkovic V (eds) Plant communication from an ecological perspective. Springer, Berlin, pp 215–227CrossRefGoogle Scholar
  10. Bruno JF, Stachowicz JJ, Bertness MD (2003) Inclusion of facilitation into ecological theory. Trends Ecol Evol 18:119–125CrossRefGoogle Scholar
  11. Callaway RM, Brooker RW, Choler P, Kikvidze Z, Lortie CJ, Michalet R, Paolini L, Pugnaire FI, Newingham B, Aschehoug ET, Armas C, Kikodze D, Cook BJ (2002) Positive interactions among alpine plants increase with stress. Nature 417:844–848PubMedCrossRefGoogle Scholar
  12. Chinnusamy V, Zhu JK (2009) Epigenetic regulation of stress responses in plants. Curr Opin Plant Biol 12:133–139CrossRefGoogle Scholar
  13. Cubas P, Vincent C, Coen E (1999) An epigenetic mutation responsible for natural variation in floral symmetry. Nature 401:157–161PubMedCrossRefGoogle Scholar
  14. D’Antonio C, Meyerson L (2002) Exotic plant species as problems and solutions in ecological restoration: a synthesis. Rest Ecol 10:703–713CrossRefGoogle Scholar
  15. Dawkins R (1976) The selfish gene. Oxford University Press, OxfordGoogle Scholar
  16. Daxinger L, Whitelaw E (2010) Transgenerational epigenetic inheritance: more questions than answers. Genome Res 20:1623–1628Google Scholar
  17. Dias ATC, Scarano FR (2007) Clusia as nurse plant. In: Lüttge U (ed) Clusia – a woody neotropical genus with remarkable plasticity and diversity. Springer, Heidelberg, pp 55–72Google Scholar
  18. Dias ATC, de Mattos EA de, Vieira SA, Azeredo JV, Scarano FR (2006) Aboveground biomass stock of native woodland on a Brazilian sandy coastal plain: estimates based on the dominant tree species. For Ecol Manage 226:364–367CrossRefGoogle Scholar
  19. Dias ATC, Bozelli RL, Darigo RM, Esteves FA, Santos HF, Figueiredo-Barros MP, Nunes MFQS, Roland F, Zamith LR, Scarano FR (2012) Rehabilitation of a bauxite tailing substrate in Central Amazonia: the effect of litter and seed addition on flood-prone forest restoration. Restoration Ecology, 20:483–489Google Scholar
  20. Dyachenko OV, Zakharchenko NS, Shevchuk TV, Bohnert HJ, Cushman J, Buryanov YI (2006) Effect of hypermethylation of CCWGG sequence in DNA in Mesembryanthemum crystallinum plants on their adaptation to salt stress. Biochemistry (Mosc) 71:461–465CrossRefGoogle Scholar
  21. Elena SF, Lenski RE (2003) Microbial genetics: evolution experiments with microorganisms: the dynamics and genetic bases of adaptation. Nat Rev Genet 4:457–469PubMedCrossRefGoogle Scholar
  22. Elton CS (1958) The ecology of invasions by animals and plants. Methuen, LondresGoogle Scholar
  23. Faria APG, Matallana G, Wendt T, Scarano FR (2006) Low fruit set in the abundant dioecious tree Clusia hilariana (Clusiaceae) in a Brazilian restinga. Flora 201:606–611CrossRefGoogle Scholar
  24. Fetene M, Beck E (2004) Water relations of indigenous versus exotic tree species, growing at the same site in a tropical montane forest in southern Ethiopia. Trees 18:428–435CrossRefGoogle Scholar
  25. Feyera S, Beck E, Lüttge U (2002) Exotic trees as nurse-trees for the regeneration of natural tropical forests. Trees 16:245–249CrossRefGoogle Scholar
  26. Franco AC, Nobel PS (1989) Effect of nurse plants on the microhabitat and growth of cacti. J Ecol 77:870–886CrossRefGoogle Scholar
  27. Friedman WE, Diggle PK (2011) Charles Darwin and the origins of plant evolutionary developmental biology. Plant Cell 23:1194–1207PubMedCrossRefGoogle Scholar
  28. Gierer A (1998) Im Spiegel der Natur erkennen wir uns selbst. Wissenschaft und Menschenbild. Rowohlt, ReinbeckGoogle Scholar
  29. Gilbert SF, Epel D (2009) Ecological development biology. Integrating epigenetics, medicine and evolution. Sinauer Ass., Palgrave-MacMillan, New YorkGoogle Scholar
  30. Gould JG (2002) The structure of evolutionary theory. Harvard University Press, Cambridge, MAGoogle Scholar
  31. Grams TEE, Lüttge U (2010) Space as a resource. Prog Bot 72:349–370CrossRefGoogle Scholar
  32. Hastings A, Byers JE, Crooks JA, Cuddington K, Jones CG, Lambrinos JG, Talley TS, Wilson WG (2006) Ecosystem engineering in space and time. Ecol Lett 10:153–164CrossRefGoogle Scholar
  33. Heil M (2010) Within-plant signaling by volatiles triggers systemic defences. In: Baluška F, Ninkovic V (eds) Plant communication from an ecological perspective. Springer, Berlin, pp 99–112CrossRefGoogle Scholar
  34. Jablonka E, Lamb MJ (1989) The inheritance of acquired epigenetic variation. J Theor Biol 139:69–83CrossRefGoogle Scholar
  35. Jones CG, Lawton JH, Shachak M (1997) Positive and negative effects of organisms as physical ecosystem engineers. Ecology 78:1946–1957CrossRefGoogle Scholar
  36. King M-C, Wilson AC (1975) Evolution at two levels in humans and chimpanzees. Science 188:107–116PubMedCrossRefGoogle Scholar
  37. Kou HP, Li Y, Song XX, Ou XF, Xing SC, Ma J, von Wettstein D, Liu B (2011) Heritable alteration in DNA methylation induced by nitrogen-deficiency stress accompanies enhanced tolerance by progenies to stress in rice (Oryza sativa L.). J Plant Physiol 168:1685–1693PubMedCrossRefGoogle Scholar
  38. Kreuzer M, Vaasen A, Scarano FR, Hampp R (2007) Mycorrhiza of Clusia species: types, abundance, responses to environmental conditions. In: Lüttge U (ed) Clusia – a woody neotropical genus with remarkable plasticity and diversity. Springer, Heidelberg, pp 235–242Google Scholar
  39. Lenski RE, Ofria C, Collier TC, Adami C (1999) Genome complexity, robustness and genetic interactions in digital organisms. Nature 400:661–664PubMedCrossRefGoogle Scholar
  40. Lenski RE, Ofria C, Pennock RT, Adami C (2003) The evolutionary origin of complex features. Nature 423:139–144PubMedCrossRefGoogle Scholar
  41. Lovelock J (1979) Gaia – A new look at life on earth. Oxford University Press, OxfordGoogle Scholar
  42. Lovelock J (2009) The vanishing face of Gaia – a final warning. Basic Books, New YorkGoogle Scholar
  43. Lüttge U (2004) Ecophysiology of crassulacean acid metabolism (CAM). Ann Bot 93:629–652PubMedCrossRefGoogle Scholar
  44. Lüttge U (2005) Genotypes- phenotypes – ecotypes: relations to crassulacean acid metabolism. Nova Acta Leopold 92(342):177–193Google Scholar
  45. Lüttge U (2006) Photosynthetic flexibility and ecophysiological plasticity: questions and lessons from Clusia, the only CAM tree, in the neotropics. New Phytol 171:7–25PubMedCrossRefGoogle Scholar
  46. Lüttge U (2008) Physiological ecology of tropical plants, 2nd edn. Springer, HeidelbergGoogle Scholar
  47. Lüttge U (2010a) Plasticity and conservation. Nat Conservação, Br J Nat Conserv 8:120–126Google Scholar
  48. Lüttge U (2010b) Ability of crassulacean acid metabolism plants to overcome interacting stresses in tropical environments. AoB plants, doi:10.1093/aobpla/plq005, www.aobplants.oxfordjournals.org
  49. Lüttge U (2012) The planet Earth: can it feed nine billion people? Nova Acta Leopold (in press)Google Scholar
  50. Lüttge U, Berg A, Fetene M, Nauke P, Peter D, Beck E (2003) Comparative characterization of photosynthetic performance and water relations of native trees and exotic plantation trees in an Ethiopian forest. Trees 17:40–50CrossRefGoogle Scholar
  51. Mannheimer S, Bevilacqua G, Caramaschi EP, Scarano FR (2003) Evidence for seed dispersal by the catfish Auchenipterichthys longimanus in an Amazonian lake. J Trop Ecol 19:215–218CrossRefGoogle Scholar
  52. Matyssek R, Lüttge U (2012) Gaia – The planet holobiont. Nova Acta Leopold (in press)Google Scholar
  53. McMullen CK (1999) Flowering plants of the Galapágos. Comstock Publishing Associates, Division of Cornell University Press, IthacaGoogle Scholar
  54. Molinier J, Ries G, Zipfel C, Hohn B (2006) Transgeneration memory of stress in plants. Nature 442:1046–1049PubMedCrossRefGoogle Scholar
  55. Müller GB (2007) Evo-devo: extending the evolutionary synthesis. Nat Rev Genet 8:939–949CrossRefGoogle Scholar
  56. Paulsen M (2007) Genomic imprinting in Säugetieren: Das epigenetische Gedächtnis. Biologie in unserer Zeit 37:86–91CrossRefGoogle Scholar
  57. Pimentel MCP, Barros MJ, Cirne P, de Mattos EA, Oliveira RC, Pereira MCA, Scarano FR, Zaluar HLT, Araujo DSD (2007) Spatial variation in the structural and floristic composition of “restinga” vegetation in southeastern Brazil. Rev Bras Bot 30:543–551CrossRefGoogle Scholar
  58. Porembski S (2011) Evolution, diversity and habitats of poikilohydrous vascular plants. In: Lüttge U, Beck E, Bartels D (eds) Plant desiccation tolerance, vol 215, Ecological studies. Springer, Berlin, pp 139–156CrossRefGoogle Scholar
  59. Porembski S, Barthlott W (2000) Inselbergs, vol 146, Ecological studies. Springer, BerlinCrossRefGoogle Scholar
  60. Richards EJ (2006) Inherited epigenetic variation – revisiting soft inheritance. Nat Rev Genet 76:395–401CrossRefGoogle Scholar
  61. Sakai AK, Allendorf FW, Holt JS, Lodge DM, Molofski J, With KA, Baughman S, Cabin RJ, Cohen JE, Ellstrand NC, McCauley DE, O’Neil P, Parker IM, Thompson JN, Weller SG (2001) The population biology of invasive species. Annu Rev Ecol Syst 32:305–322CrossRefGoogle Scholar
  62. Saze H (2008) Epigenetic memory transmission through mitosis and meiosis in plants. Semin Cell Dev Biol 19:527–536PubMedCrossRefGoogle Scholar
  63. Scarano FR (2002) Structure, function and floristic relationships of plant communities in stressful habitats marginal to the Brazilian Atlantic rain forest. Ann Bot 90:517–524PubMedCrossRefGoogle Scholar
  64. Scarano FR (2009) Plant communities at the periphery of the Atlantic rain forest: Rare-species bias and its risks for conservation. Biol Conserv 142:1201–1208CrossRefGoogle Scholar
  65. Scarano FR, Garbin ML (2012) From plant to planet: integrating hierarchies to help solve planetary crisis. Nova Acta Leopold (in press)Google Scholar
  66. Scarano FR, Rios RI, Esteves FA (1998) Tree species richness, diversity and flooding regime: case studies of recuperation after anthropic impact in Brazilian flood-prone forests. Int J Ecol Environ Sci 24:223–225Google Scholar
  67. Schuster P (2011) Mit Mathematik und Computer auf Entdeckungsreisen in der Evolutionsbiologie. Nova Acta Leopold 110(377):167–211Google Scholar
  68. Souza LAG, Silva MF, Moreira FW (1994) Capacity of nodulation of one hundred leguminosae of Amazon. Acta Amazonica 24:9–18Google Scholar
  69. Thellier M (2012) A half-century adventure in the dynamics of living systems. Prog Bot 73:3–53CrossRefGoogle Scholar
  70. Thellier M, Ripoll C, Norris V (2012) Memory processes in the control of plant growth and morphogenesis. Nova Acta Leopold (in press)Google Scholar
  71. van Hulten M, Ton J, Pieterse CMJ, van Wees SCM (2010) Plant defense signaling from the underground primes aboveground defenses to confer enhanced resistance in a cost-efficient manner. In: Baluška F, Ninkovic V (eds) Plant communication from an ecological perspective. Springer, Berlin, pp 43–60CrossRefGoogle Scholar
  72. Verhoeven KJF, Jansen JJ, van Dijk PJ, Biere A (2010) Stress-induced DNA methylation changes and their heritability in asexual dandelions. New Phytol 185:1108–1118PubMedCrossRefGoogle Scholar
  73. Weigel D, Jürgens G (2002) Stem cells that make stems. Nature 415:751–754PubMedCrossRefGoogle Scholar
  74. Wikipedia (2011) Stem cell. http://en.wikipedia.org/wiki/Stem_cell
  75. Wobus AM, Wobus U, Parthier B (eds) (2010) Der Begriff der Natur. Wandlungen unseres Verständnisses und seine Folgen. Nova Acta Leopold, vol. 109, Nr. 376. Deutsche Akademie der Naturforscher Leopoldina, HalleGoogle Scholar
  76. Zhang X, Yazaki J, Sundaresan A, Cokus S, Chan SW-L, Chen H, Henderson IR, Shinn P, Pellegrini M, Jacobsen SE, Ecker JR (2006) Genome-wide high resolution mapping and functional analysis of DNA methylation in Arabidopsis. Cell 126:1189–1201PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Ulrich Lüttge
    • 1
    Email author
  • Mario L. Garbin
    • 2
  • Fabio R. Scarano
    • 3
  1. 1.Department of BiologyTechnical University of DarmstadtDarmstadtGermany
  2. 2.Conservation InternationalRio de JaneiroBrazil
  3. 3.Departamento de EcologiaUniversidade Federal do Rio de Janeiro, CCS, IBRio de JaneiroBrazil

Personalised recommendations