Gene Transfer in Legumes

  • R. M. Atif
  • E. M. Patat-Ochatt
  • L. Svabova
  • V. Ondrej
  • H. Klenoticova
  • L. Jacas
  • M. Griga
  • S. J. OchattEmail author
Part of the Progress in Botany book series (BOTANY, volume 74)


In the last few decades, a large research input has been geared up to develop and exploit a number of different techniques aiming to produce plants with improved resistance to biotic and abiotic stresses, and seeds with enhanced nutritional values. Genetic transformation has proven its novelty to introduce desired characters into crop plants to cope with these challenges. Legumes posses an undeniable agronomic and eco-physiological importance, and they are a major source of proteins for food and feed, but their yield is unstable due to a number of biotic and abiotic factors and the protein quality and content in the seed does not always compare favourably with that of cereals and oil crops. This review summarizes and compares the various transformation as well as regeneration protocols used for gene transfer in legumes that would lead to the production of genetically engineered crops with improved characters, i.e., improved nutrition, resistance to biotic and abiotic factors etc. Different factors affecting the efficiency of gene transfer in legumes are also discussed.


Transgenic Plant Somatic Embryo Somatic Embryogenesis Hairy Root Transformation Efficiency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The writing up of this review was helped by financial funding to both partner laboratories by the Eurostar grant PEASTAR E!4770.


  1. Adesoye AI, Togun AO, Machuka J (2010) Transformation of cowpea (Vigna unguiculata L. Walp.) by Agrobacterium infiltration. J Appl Biosci 30:1845–1860Google Scholar
  2. Akcay UC, Mahmoudian M, Kamci H, Yucel M, Oktem HA (2009) Agrobacterium tumefaciens-mediated genetic transformation of a recalcitrant grain legume, lentil (Lens culinaris Medik). Plant Cell Rep 28:407–417PubMedGoogle Scholar
  3. Altinkut A, Bajrovic K, Gozukirmizi N (1997) Regeneration and hairy root formation of chickpea using callus-derived plantlets and seedlings. Int Chickpea Newslett 4:30–31Google Scholar
  4. Anuradha TS, Jami SK, Datla RS, Kirti PB (2006) Genetic transformation of peanut (Arachis hypogaea L.) using cotyledonary node as explant and a promoterless gus::nptII fusion gene based vector. J Biosci 31:235–246PubMedGoogle Scholar
  5. Anuradha TS, Divya K, Jami SK, Kirti PB (2008) Transgenic tobacco and peanut plants expressing a mustard defensin show resistance to fungal pathogens. Plant Cell Rep 27:1777–1786Google Scholar
  6. Aoki T, Kamizawa A, Ayabe S (2002) Efficient Agrobacterium-mediated transformation of Lotus japonicus with reliable antibiotic selection. Plant Cell Rep 21:238–243Google Scholar
  7. Aragao FGL, Rech EL (1997) Morphological factors influencing recovery of transgenic bean plants (Phaseolus vulgaris L.) of Carioca cultivar. Int J Plant Sci 158:157–163Google Scholar
  8. Aragao FJL, Barros LMG, Brasileiro ACM, Ribero SG, Smith FD, Sanford JC, Faria JC, Rech EL (1996) Inheritance of foreign genes in transgenic bean (Phaseolus vulgaris L.) co-transformed via particle bombardment. Theor Appl Genet 93:142–150Google Scholar
  9. Araujo SS, Duque ASRL, dos Santos DMMF, Fevereiro MPS (2004) An efficient transformation method to regenerate a high number of transgenic plants using a new embryogenic line of Medicago truncatula cv Jemalong. Plant Cell Tissue Organ Cult 78:123–131Google Scholar
  10. Atanasov A, Brown DCW (1984) Plant regeneration from suspension culture and mesophyll protoplasts of Medicago sativa L. Plant Cell Tissue Organ Cult 3:149–162Google Scholar
  11. Austin S, Bingham ET, Mathews DE, Shahan MN, Will J, Burgess RR (1995) Production and field performance of transgenic alfalfa (Medicago sativa L.) expressing alpha-amylase and manganese-dependent lignin peroxidase. Euphytica 85:381–393Google Scholar
  12. Babaoglu M, McCabe MS, Power JB, Davey MR (2000) Agrobacterium-mediated transformation of Lupinus mutabilis L. using shoot apical explants. Acta Physiol Plant 22:111–119Google Scholar
  13. Barik DP, Mohapatra U, Chand PK (2005) Transgenic grasspea (Lathyrus sativus L.): factors influencing Agrobacterium-mediated transformation and regeneration. Plant Cell Rep 24:523–531PubMedGoogle Scholar
  14. Bayrac AT (2004) Optimization of a regeneration and transformation system for lentil (Lens culinaris M., cv. Sultan-I) cotyledonary petioles and epicotyls. MSc Thesis Middle East Technical University, 117 ppGoogle Scholar
  15. Bean SJ, Gooding PS, Mullineaux PM, Davies DR (1997) A simple system for pea transformation. Plant Cell Rep 16:513–519Google Scholar
  16. Bhargava SC, Smigocki AC (1994) Transformation of tropical grain legumes using particle bombradment. Curr Sci 66:439–442Google Scholar
  17. Bhatnagar M, Prasad K, Bhatnagar-Mathur P, Narasu ML, Waliyar F, Sharma KK (2010) An efficient method for the production of marker-free transgenic plants of peanut (Arachis hypogaea L.). Plant Cell Rep 29:495–502PubMedGoogle Scholar
  18. Bhatnagar-Mathur P, Devi MJ, Reddy DS, Lavanya M, Vadez V, Serraj R, Yamaguchi-Shinozaki K, Sharma KK (2007) Stress-inducible expression of At DREB1A in transgenic peanut (Arachis hypogaea L.) increases transpiration efficiency under water-limiting conditions. Plant Cell Rep 26:2071–2082PubMedGoogle Scholar
  19. Bhatnagar-Mathur P, Vadez V, Devi MJ, Lavanya M, Vani G, Sharma KK (2009) Genetic engineering of chickpea (Cicer arietinum L.) with the P5CSF129A gene for osmoregulation with implications on drought tolerance. Mol Breed 23:591–606Google Scholar
  20. Bhattacharjee B, Mohan M, Nair S (2010) Transformation of chickpea: effect of genotype, explant, Agrobacterium-strain and composition of culture medium. Biol Plant 54:21–32Google Scholar
  21. Böhmer P, Meyer B, Jacobsen H-J (1995) Thidiazuron-induced high frequency of shoot induction and plant regeneration in protoplast derived pea callus. Plant Cell Rep 15:26–29Google Scholar
  22. Boisson-Dernier A, Chabaud M, Garcia F, Bécard G, Rosenberg C, Barker DG (2001) Agrobacterium rhizogenes-transformed roots of Medicago truncatula for the study of nitrogen-fixing and endomycorrhizal symbiotic associations. Mol Plant Microbe Interact 14:695–700PubMedGoogle Scholar
  23. Böttinger P, Steinmetz A, Schieder O, Pickardt T (2001) Agrobacterium-mediated transformation of Vicia faba. Mol Breed 8:243–254Google Scholar
  24. Braun, A.C., (1958). A physiological basis for autonomous growth of crown gall tumor cell. Proc. Natl. Acad. Sci., USA., 44: 344–9Google Scholar
  25. Calderini O, Bovone T, Scotti C, Pupilli F, Piano E, Arcioni S (2007) Delay of leaf senescence in Medicago sativa transformed with the ipt gene controlled by the senescence-specific promoter SAG12. Plant Cell Rep 26:611–615PubMedGoogle Scholar
  26. Chabaud M, Larsonneau C, Marmouget C, Huguet T (1996) Transformation of barrel medic (Medicago truncatula Gaertn.) by Agrobacterium tumefaciens and regeneration via somatic embryogenesis of transgenic plants. Plant Cell Rep 15:305–310Google Scholar
  27. Chabaud M, de Carvalho NF, Barker DG (2003) Efficient transformation of Medicago truncatula cv Jemalong using the hypervirulent Agrobacterium tumefaciens strain AGL1. Plant Cell Rep 22:46–51PubMedGoogle Scholar
  28. Chabaud M, Ratet P, de Sousa Araújo S, Roldão Lopes AS, Duque A, Harrison M, Barker DG (2007) Agrobacterium tumefaciens-mediated transformation and in vitro plant regeneration of M. truncatula. In: Medicago truncatula handbook.
  29. Chakraborti D, Sarkar A, Mondal HA, Das S (2009) Tissue specific expression of potent insecticidal, Allium sativum leaf agglutinin (ASAL) in important pulse crop, chickpea. Transgenic Res 18:529–544PubMedGoogle Scholar
  30. Chand PK, Ochatt SJ, Rech EL, Power JB, Davey MR (1988) Electroporation stimulates plant regeneration from protoplasts of the woody medicinal species Solanum dulcamara L. J Exp Bot 39:1267–1274Google Scholar
  31. Chang DC (1992) Design of protocols for electro oration and electrofusion: selection of electrical parameters. In: Chang DC, Chassy BM, Saunders JA, Sowers AE (eds) Guide to electroporation and electrofusion. Academic, San Diego, pp 429–455Google Scholar
  32. Chaudhury D, Madanpotra S, Jaiwal R, Saini R, Ananda PK, Jaiwal PK (2007) Agrobacterium tumefaciens-mediated high frequency genetic transformation of an Indian cowpea (Vigna unguiculata L. Walp.) cultivar and transmission of transgenes into progeny. Plant Sci 172:692–700Google Scholar
  33. Chee PP, Fober KA, Slightom JL (1989) Transformation of soybean (Glycine max) by infecting germinating seeds with Agrobacterium tumefaciens. Plant Physiol 91:1212–1218PubMedGoogle Scholar
  34. Chilton MD (2001) Agrobacterium. A memoir. Plant Physiol 125:9–14PubMedGoogle Scholar
  35. Cho HJ, Brotherton JE, Song HS, Widholm JM (2000) Increasing tryptophan synthesis in a forage legume Astragalus sinicus by expressing the tobacco feedback-insensitive anthranilate synthase (ASA2) gene. Plant Physiol 123:1069–1076PubMedGoogle Scholar
  36. Chopra R, Prabhakar A, Singh N, Saini R (2011) In vitro regeneration and sonication–assisted Agrobacterium tumefaciens (SAAT) mediated transformation in Indian cultivars of lentil (Lens culinaris Medik.). 5th Chandigarh Science Congress, Chandigarh, India, 10 ppGoogle Scholar
  37. Christou P, Swain WF, Yang NS, McCabe DE (1989) Inheritance and expression of foreign genes in transgenic soybean plants. Proc Natl Acad Sci USA 86:7500–7504PubMedGoogle Scholar
  38. Christou P, McCabe DE, Matinell BJ, Swain WF (1990) Soybean genetic transformation-commercial production of transgenic plants. Trends Biotechnol 8:145–151Google Scholar
  39. Clarke JL, Daniell H, Nugent JM (2011) Chloroplast biotechnology, genomics and evolution: current status, challenges and future directions. Plant Mol Biol 76:207–209PubMedGoogle Scholar
  40. Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743PubMedGoogle Scholar
  41. Cole KS (1968) Membranes, ions and impulses: a chapter of classical biophysics. University of California Press, BerkeleyGoogle Scholar
  42. Confalonieri M, Borghetti R, Macovei A, Testoni C, Carbonera D, Salema Fevereiro MP, Rommens C, Swords K, Piano E, Balestrazzi A (2010) Backbone-free transformation of barrel medic (Medicago truncatula) with a Medicago-derived transfer DNA. Plant Cell Rep 29:1013–1021PubMedGoogle Scholar
  43. Cook D (1999) Medicago truncatula: a model in the making! Curr Opin Plant Biol 2:301–304PubMedGoogle Scholar
  44. Crane C, Wright E, Dixon RA, Wang ZY (2006) Transgenic Medicago truncatula plants obtained from Agrobacterium tumefaciens-transformed roots and Agrobacterium rhizogenes-transformed hairy roots. Planta 223:1344–1354PubMedGoogle Scholar
  45. Dan Y, Reighceri NA (1998) Organogenic regeneration of soybean from hypocotyl explants. In Vitro Cell Dev Biol Plant 34:14–21Google Scholar
  46. Dang W, Zhi-Ming W (2007) An optimized Agrobacterium-mediated transformation for soybean for expression of binary insect resistance genes. Plant Sci 173:381–389Google Scholar
  47. Davies DR, Hamilton J, Mullineaux P (1993) Transformation of peas. Plant Cell Rep 12:180–183Google Scholar
  48. Dayal S, Lavanya M, Devi P, Sharma KK (2003) An efficient protocol for shoot regeneration and genetic transformation of pigeonpea [Cajanus cajan (L.) Millsp.] using leaf explants. Plant Cell Rep 21:1072–1079PubMedGoogle Scholar
  49. De Kathen A, Jacobsen H-J (1990) Agrobacterium tumefaciens-mediated transformation of Pisum sativum L. using binary and cointegrate vectors. Plant Cell Rep 9:276–279Google Scholar
  50. De Kathen A, Jacobsen H-J (1995) Cell competence for Agrobacterium-mediated DNA transfer in Pisum sativum L. Transgenic Res 4:184–195Google Scholar
  51. Deak M, Kiss GB, Koncz C, Dudits D (1986) Transformation of Medicago by Agrobacterium mediated gene transfer. Plant Cell Rep 5:97–100Google Scholar
  52. Desgagnés R, Laberge S, Allard G, Khoudi H, Castonguay Y, Lapointe J, Michaud R, Vézina L-P (1995) Genetic transformation of commercial breeding lines of alfalfa (Medicago sativa). Plant Cell Tissue Organ Cult 42:129–140Google Scholar
  53. Dhir SK, Dhir S, Pizanis Sturtevant A, Widholm JM (1991) Regeneration of transformed shoots from electroporated soybean (Glycine max (L.) Merr.) protoplasts. Plant Cell Rep 10:97–101Google Scholar
  54. Di Antonio C, Selva E, Briquet M, Boutry M (1988) Transformation of Vicia faba explants with Agrobacterium tumefaciens. Arch Int Physiol Biochim 96:6Google Scholar
  55. Di R, Purcell V, Collins GB, Ghabrial SA (1996) Production of transgenic soybean lines expressing the bean pod mottle virus coat protein precursor gene. Plant Cell Rep 15:746–750Google Scholar
  56. Díaz CL, Gronlund M, Schlaman HRM, Spaink HP (2005) Induction of hairy roots for symbiotic gene expression studies. In: Márquez AJ (ed) Lotus japonicus handbook. Springer, Dordrecht, pp 261–277Google Scholar
  57. Dickins RD, Reddy MSS, Meurer CA, Remond CT, Collins GB (2003) Recent advance in soybean transformation. In: Jaiwal PK, Singh PK (eds) Applied genetics of leguminosae biotechnology. Kluwer Academic Publishers, Great Britain, pp 3–21Google Scholar
  58. Dijak M, Smith DL, Wilson TJ, Brown DCW (1986) Stimulation of direct embryogenesis from mesophyll protoplasts of Medicago sativa. Plant Cell Rep 5:468–470Google Scholar
  59. Ding Y, Aldao-Humble G, Ludlow E, Drayton M, Lin Y, Nagel J, Dupal M, Zhao G, Pallaghy C, Kalla R, Emmerling M, Spangenberg G (2003) Efficient plant regeneration and Agrobacterium-mediated transformation in Medicago and Trifolium species. Plant Sci 165:1419–1427Google Scholar
  60. Dita MA, Rispail N, Prats E, Rubiales D, Singh KB (2006) Biotechnology approaches to overcome biotic and abiotic stress constraints in legumes. Euphytica 147:1–24Google Scholar
  61. Dogan D, Khawar KM, Özcan S (2005) Agrobacterium mediated tumor and hairy root formation from different explants of lentils derived from young seedlings. Int J Agr Biol 7:1019–1025Google Scholar
  62. Droste A, Pasquali G, Bodanese-Zanettini MH (2000) Integrated bombardment and Agrobacterium transformation system: an alternative method for soybean transformation. Plant Mol Biol Rep 18:51–59Google Scholar
  63. Du S, Erickson L, Bowley S (1994) Effect of plant genotype on the transformation of cultivated alfalfa (Medicago sativa) by Agrobacterium tumefaciens. Plant Cell Rep 13:330–334Google Scholar
  64. Duque AS, Araujo SS, Cordeiro MA, Santos DM, Fevereiro MP (2007) Use of fused gfp and gus reporters for the recovery of transformed Medicago truncatula somatic embryos without selective pressure. Plant Cell Tissue Organ Cult 90:325–330Google Scholar
  65. Ealing PM, Hancock KR, White DWR (1992) Expression of the pea albumin I gene in transgenic white clover and tobacco. Transgenic Res 3:344–354Google Scholar
  66. Eapen E (2008) Advances in development of transgenic pulse crops. Biotechnol Adv 26:162–168PubMedGoogle Scholar
  67. Edwards ME, Choo T-S, Dickson CA, Scott C, Gidley MJ, Grant Reid JS (2004) The seeds of Lotus japonicus lines transformed with sense, antisense, and sense/antisense galactomannan galactosyltransferase constructs have structurally altered galactomannans in their endosperm cell walls. Plant Physiol 134:1153–1162PubMedGoogle Scholar
  68. Fakhrai H, Fakhrai F, Evans PK (1989) In vitro culture and plant regeneration in Vicia faba subsp. Equina (Var. Spring Blaze). J Exp Bot 40:813–817Google Scholar
  69. Fan Y, Li W, Wang J, Liu J, Yang M, Xu D, Zhu X, Wang X (2011) Efficient production of human acidic fibroblast growth factor in pea (Pisum sativum L.) plants by agroinfection of germinated seeds. BMC Biotechnol 11:45. doi: 10.1186/1472-6750-11-45 PubMedGoogle Scholar
  70. Ferradini N, Nicolia A, Capomaccio S, Veronesi F, Rosellini D (2011a) Assessment of simple marker-free genetic transformation techniques in alfalfa. Plant Cell Rep 30:1991–2000PubMedGoogle Scholar
  71. Ferradini L, Nicolia A, Capomaccio S, Veronesi F, Rosellini D (2011b) A point mutation in the Medicago sativa GSA gene provides a novel, efficient, selectable marker for plant genetic engineering. J Biotechnol 156:147–152PubMedGoogle Scholar
  72. Floss DM, Sack M, Stadlman J, Rademacher T, Scheller J, Stöger E, Fischer R, Conrad U (2008) Biochemical and functional characterization of anti-HIV antibody-ELP fusion proteins from transgenic plants. Plant Biotechnol J 6:379–391PubMedGoogle Scholar
  73. Fontana GS, Santini L, Caretto S, Frugis G, Mariotti D (1993) Genetic transformation in the grain legume Cicer arietinum L (chickpea). Plant Cell Rep 12:194–198Google Scholar
  74. Fromm M, Taylor LP, Walbot V (1985) Expression of genes transferred into monocot and dicot plant cells by electroporation. Proc Nat Acad Sci USA 82:5824–5828PubMedGoogle Scholar
  75. Garcia JA, Hille J, Goldbach R (1986) Transformation of cowpea Vigna unguiculata cells with an antibiotic resistance gene using a Ti-plasmid-derived vector. Plant Sci 44:37–46Google Scholar
  76. Garcia JA, Hille J, Vos P, Goldbach R (1987) Transformation of cowpea Vigna unguiculata with a full-length DNA copy of cowpea mosaic virus mRNA. Plant Sci 48:89–98Google Scholar
  77. Geetha N, Venkatachalam P, Lakshmi Sita G (1999) Agrobacterium-mediated genetic transformation of pigeonpea (Cajanus cajan L.) and development of transgenic plants via direct organogenesis. Plant Biotechnol 16:213–218Google Scholar
  78. Grant JE, Cooper PA, McAra AE, Frew TJ (1995) Transformation of peas (Pisum sativum L.) using immature cotyledons. Plant Cell Rep 15:254–258Google Scholar
  79. Grant JE, Cooper PA, Gilpin BJ, Hoglund SJ, Pither-Joyce MD, Timmerman-Vaughan GM (1998) Kanamycin is effective for selecting transformed peas. Plant Sci 139:159–164Google Scholar
  80. Grant JE, Thomson LMJ, Pither-Joyce MD, Dale TM, Cooper PA (2003) Influence of Agrobacterium tumefaciens strain on the production of transgenic peas (Pisum sativum L.). Plant Cell Rep 21:1207–1210PubMedGoogle Scholar
  81. Gulati A, Jaiwal PK (1994) Plant regeneration from cotyledonary node explants of mungbean (Vigna radiata (L.) Wilczek). Plant Cell Rep 13:523–527Google Scholar
  82. Gulati A, Schryer P, McHughen A (2002) Production of fertile transgenic lentil (Lens culinaris Medik) plants using particle bombardment. In Vitro Cell Dev Biol Plant 38:316–324Google Scholar
  83. Hadi MZ, McMullen MD, Finer JJ (1996) Transformation of 12 different plasmids into soybean via particle bombardment. Plant Cell Rep 15:500–505Google Scholar
  84. Hanafy M, Pickardt T, Kiesecker H, Jacobsen H-J (2005) Agrobacterium-mediated transformation of faba bean (Vicia faba L.) using embryo axes. Euphytica 142:227–236Google Scholar
  85. Hanafy M, Böttinger P, Jacobsen H-J, Pickardt T (2008) Agrobacterium-mediated transformation of faba bean. In: Kirti PB (ed) Handbook of new technologies for genetic improvement of legumes. CRC Press, Boca Raton, FL, pp 287–300, eBook. ISBN 978-1-56022-3085Google Scholar
  86. Handberg K, Stougaard J (1992) Lotus japonicus, an autogamous, diploid legume species for classical and molecular genetics. Plant J 2:487–496Google Scholar
  87. Hansen G, Wright SM (1999) Recent advances in the transformation of plants. Trends Plant Sci 4:226–231PubMedGoogle Scholar
  88. Harrison MJ, Choudhary AD, Dubery I, Lamb CJ, Dixon RA (1991) Stress responses in alfalfa (Medicago sativa L.). 8. Cis-elements and trans-acting factors for the quantitative expression of a bean chalcone synthase gene promoter in electroporated alfalfa protoplasts. Plant Mol Biol 16:877–890PubMedGoogle Scholar
  89. Hashem R (2007) Improvement of lentil (Lens culinaris Medik.) through genetic transformation. PhD Thesis, University, Hannover, Germany, 162 ppGoogle Scholar
  90. Hashimoto T, Yamada T, Tada A, Kawamata S, Tanaka Y, Spriprasertak P, Ichinose Y, Kato H, Izutsu S, Shiraishi T, Oku H, Ohtsuki Y (1992) Transient expression in electroporated pea protoplasts: elicitor responsiveness of a phenylalanine ammonia-lyase promoter. Plant Cell Rep 11:183–187Google Scholar
  91. Hauptmann RM, Ozias-Akins P, Vasil V, Tabaeizadeh Z, Rogers SG, Horsch RB, Vasil IK, Fraley RT (1987) Transient expression of electroporated DNA in monocotyledonous and dicotyledonous species. Plant Cell Rep 6:265–270Google Scholar
  92. Hinchee MAW, Connor-Ward DV, Newell CA, McDonnell RE, Sato SJ, Gasser CS, Fischhoff DA, Re DB, Fraley RT, Horsch RB (1988) Production of transgenic soybean plants using Agrobacterium-mediated DNA transfer. Bio/Technology 6:915–922Google Scholar
  93. Hobbs SLA, Jackson JA, Mahon JD (1989) Specificity of strain and genotype in the susceptibility of pea to Agrobacterium tumefaciens. Plant Cell Rep 8:274–277Google Scholar
  94. Hoffman B, Trinh TH, Leung J, Kondorosi A, Kondorosi E (1997) A new Medicago truncatula line with superior in vitro regeneration, transformation and symbiotic properties isolated through cell culture selection. Mol Plant Microbe Interact 10:307–315Google Scholar
  95. (2007) Novel feed: peas to combat infectious diseases
  96. Hussey G, Johnson RD, Warren S (1989) Transformation of meristematic cells in the shoot apex of cultured pea shoots by Agrobacterium tumefaciens and A. rhizogenes. Protoplasma 148:101–105Google Scholar
  97. Iantcheva A, Vlahova M, Atanassov A (2005) Genetic transformation of Mtr using system for direct somatic embryogenesis promoted by TDZ. Biotechnol Biotechnol Eq 7:50–56Google Scholar
  98. Ignacimuthu S, Prakash S (2006) Agrobacterium-mediated transformation of chickpea with amylase inhibitor gene for insect resistance. J Biosci 31:339–345PubMedGoogle Scholar
  99. Ikea J, Ingelbrecht I, Uwaifo A, Thottappilly G (2003) Stable gene transformation in cowpea (Vigna unguiculata L. Walp.) using particle gun method. Afr J Biotechnol 2:211–218Google Scholar
  100. Indurker S, Misra HS, Eapen S (2007) Genetic transformation of chickpea (Cicer arietinum L.) with insecticidal crystal protein gene using particle gun bombardment. Plant Cell Rep 26:755–763PubMedGoogle Scholar
  101. Iqbal MM, Zafar Y, Nazir F, Ali S, Iqbal J, Asif MA, Rashid O, Ali GM (2011) Overexpression of bacterial chitinase gene in Pakistani peanut cultivar GOLDEN. Afr J Biotechnol 10:5838–5844Google Scholar
  102. Iqbal MM, Nazir F, Ali S, Asif MA, Zafar Y, Iqbal J, Ali GM (2012) Over expression of rice chitinase gene in transgenic peanut (Arachis hypogaea L.) improves resistance against leaf spot. Mol Biotechnol 50:129–136PubMedGoogle Scholar
  103. Islam MN, Islam KT (2010) Agrobacterium-mediated genetic transformation of mungbean (Vigna radiata (L.) Wilczek). Plant Tissue Cult Biotechnol 20:233–236Google Scholar
  104. Ismail RM, El-Domyati FM, Sadik AS, Nasr El-Din TM, Abdelsalam AZE (2001) Establishment of a transformation system in some Egyptian cultivars of Vicia faba L. Arab J Biotechnol 4:59–61Google Scholar
  105. Ivo NL, Nascimento CP, Vieira LS, Campos FAP, Aragao FJL (2008) Biolistic-mediated genetic transformation of cowpea (Vigna unguiculata) and stable Mendelian inheritance of transgenes. Plant Cell Rep 27:1475–1483PubMedGoogle Scholar
  106. Jaiwal PW, Kumari R, Ignacimuthu S, Potrykus I, Sautter C (2001) Agrobacterium tumefaciens-mediated genetic transformation of mungbean (Vigna radiata L. Wilczek)—a recalcitrant grain legume. Plant Sci 161:239–247PubMedGoogle Scholar
  107. Jelenic S, Mitrikeski PT, Papes D, Jelaska S (2000) Agrobacterium-mediated transformation of broad bean Vicia faba L. Food Technol Biotechnol 38:167–172Google Scholar
  108. Jian B, Hou W, Wu C, Liu B, Liu W, Song S, Bi Y, Han T (2009) Agrobacterium rhizogenes-mediated transformation of superroot-derived Lotus corniculatus plants: a valuable tool for functional genomics. BMC Plant Biol 9:78. doi: 10.1186/1471-2229-9-78 PubMedGoogle Scholar
  109. Jones AL, Johansen IE, Bean SJ, Bach I, Maule AJ (1998) Specificity of resistance to pea seed-borne mosaic potyvirus in transgenic peas expressing the viral replicase (NIb) gene. J Gen Virol 79:3129–3137PubMedGoogle Scholar
  110. Kamaté K, Rodriguez-Llorente ID, Scholte M, Durand P, Ratet P, Kondorosi E, Kondorosi A, Trinh TH (2000) Transformation of floral organs with GFP in Medicago truncatula. Plant Cell Rep 19:647–653Google Scholar
  111. Kapila J, De Rycke R, van Montagu M, Angenon G (1997) An Agrobacterium-mediated transient gene expression system for intact leaves. Plant Sci 122:101–108Google Scholar
  112. Kar S, Basu D, Das S, Ramakrishnan NA, Mukherjee P, Nayak P, Sen SK (1997) Expression of Cry1A(c) gene of Bacillus thuringiensis in transgenic chickpea plants inhibits development of pod borer (Heliothis armigera) larvae. Transgenic Res 6:177–185Google Scholar
  113. Karthikeyan AS, Sarma KS, Veluthambi K (1996) Agrobacterium tumefaciens-mediated transformation of Vigna mungo (L.) Hepper. Plant Cell Rep 15:328–331Google Scholar
  114. Kato T, Goto Y, Ono K, Hayashi M, Murooka Y (2005) Expression of a major house dust mite allergen gene from Dermatophagoides farinae in Lotus japonicus accession Miyakojima MG-20. J Biosci Bioeng 99:165–168PubMedGoogle Scholar
  115. Kelemu S, Chanshun J, Guixi H, Segura G (2005) Genetic transformation of the tropical forage legume Stylosanthes guianensis with a rice-chitinase gene confers resistance to Rhizoctonia foliar blight disease. Afr J Biotechnol 4:1025–1033Google Scholar
  116. Khalafalla MM, Hattori K (2000) Differential in vitro direct shoot regeneration responses in embryo axis and shoot tip explants of faba bean. Breed Sci 50:117–122Google Scholar
  117. Khatib F, Makris A, Yamaguchi-Shinozaki K, Kumar S, Sarker A, Erskine W, Baum M (2011) Expression of the DREB1A gene in lentil (Lens culinaris Medik. Subsp. Culinaris) transformed with the Agrobacterium system. Crop Pasture Sci 62:488–495Google Scholar
  118. Khawar KM, Ozcan S (2002) In vitro induction of crown galls by Agrobacterium tumefaciens super virulent strain A281 (pTiBo 542) in lentil (Lens culinaris Medik.). Turk J Bot 26:165–170Google Scholar
  119. Krejcı P, Matuskova P, Hanacek P, Reinohl V, Prochazka S (2007) The transformation of pea (Pisum sativum L.): applicable methods of Agrobacterium tumefaciens-mediated gene transfer. Acta Physiol Plant 29:157–163Google Scholar
  120. Krishna G, Reddy PS, Ramteke PW, Bhattacharya PS (2010) Progress of tissue culture and genetic transformation research in pigeon pea [Cajanus cajan (L.) Millsp.]. Plant Cell Rep 29:1079–1095PubMedGoogle Scholar
  121. Krishnamurthy KV, Suhasini K, Sagare AP, Meixner M, De Kathen A, Pickardt T, Schieder O (2000) Agrobacterium-mediated transformation of chickpea (Cicer arietinum L.) embryo axes. Plant Cell Rep 19:235–240Google Scholar
  122. Kumagai H, Kouchi H (2003) Gene silencing by expression of hairpin RNA in Lotus japonicus roots and root nodules. Mol Plant Microbe Interact 16:663–668PubMedGoogle Scholar
  123. Lawrence PK, Koundal KR (2001) Agrobacterium tumefaciens-mediated transformation of pigeon pea (Cajanus cajan L. Millsp.) and molecular analysis of regenerated plants. Curr Sci 80:1428–1432Google Scholar
  124. Lehminger-Mertens R, Jacobsen HJ (1993) Regeneration of plants from protoplasts of pea (Pisum sativum L.). In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 22, Plant protoplasts and genetic engineering III. Springer, Berlin, Heidelberg, pp 97–104Google Scholar
  125. Li H, Wylie SJ, Jones MGK (2000) Transgenic yellow lupin (Lupinus luteus). Plant Cell Rep 19:634–637Google Scholar
  126. Lohar DP, Bird DMcK (2003) Lotus japonicus: a new model to study root-parasitic nematodes. Plant Cell Physiol 44:1176–1184PubMedGoogle Scholar
  127. Lohar DP, Schuller K, Buzas DM, Gresshoff PM, Stiller J (2001) Transformation of Lotus japonicus using the herbicide resistance bar gene as a selectable marker. J Exp Bot 52:1697–1702PubMedGoogle Scholar
  128. Lombari P, Ercolano E, El Alaoui H, Chiurazzi M (2003) A new transformation-regeneration procedure in the model legume Lotus japonicus: root explants as a source of large numbers of cells susceptible to Agrobacterium-mediated transformation. Plant Cell Rep 21:771–777PubMedGoogle Scholar
  129. Lombari P, Ercolano E, El Alaoui H, Chiurazzi M (2005) Agrobacterium-mediated in vitro transformation. In: Márquez AJ (ed) Lotus japonicus handbook. Springer, Dordrecht, pp 251–259Google Scholar
  130. Lü D, Cao X, Tang S, Tian X (2000) Regeneration of foreign genes co-transformed plants of Medicago sativa L. by Agrobacterium rhizogenes. Sci China C Life Sci 43:387–394PubMedGoogle Scholar
  131. Lulsdorf MM, Rempel H, Jackson JA, Baliski DS, Hobbs SLA (1991) Optimizing the production of transformed pea (Pisum sativum L.) callus using disarmed Agrobacterium tumefaciens strains. Plant Cell Rep 9:479–483Google Scholar
  132. Mahalakshmi LS, Leela T, Kumar SM, Kumar BK, Naresh B, Devi P (2006) Enhanced genetic transformation efficiency of mungbean by use of primary leaf explants. Curr Sci 91:93–99Google Scholar
  133. Mahmoudian M, Yocel M, Oktem HA (2002) Transformation of lentil (Lens culinaris M.) cotyledonary nodes by vacuum infiltration of Agrobacterium tumefaciens. Plant Mol Biol Rep 20:251–257Google Scholar
  134. Martirani L, Stiller J, Mirabella R, Alfano F, Lamberti A, Radutoiu SE, Iaccarino M, Gresshoff PM, Chiurazzi M (1999) T-DNA tagging of nodulation- and root-related genes in Lotus japonicus: expression patterns and potential for promoter trapping and insertional mutagenesis. Mol Plant Microbe Interact 12:275–284Google Scholar
  135. McCabe DE, Swain WF, Martinell BJ, Christou P (1988) Stable transformation of soybean (Glycine max) by particle acceleration. Bio/Technology 6:923–926Google Scholar
  136. McClean P, Chee P, Held B, Simental J, Drong RF, Slightom J (1991) Susceptibility of dry bean (Phaseolus vulgaris L.) to Agrobacterium infection: transformation of cotyledonary and hypocotyl tissues. Plant Cell Tissue Organ Cult 24:131–138Google Scholar
  137. Mehrotra M, Sanyal I, Amla DV (2011a) High-efficiency Agrobacterium-mediated transformation of chickpea (Cicer arietinum L.) and regeneration of insect-resistant transgenic plants. Plant Cell Rep 30:1603–1616PubMedGoogle Scholar
  138. Mehrotra M, Singh AK, Sanyal I, Altosaar I, Amla DV (2011b) Pyramiding of modified cry1Ab and cry1Ac genes of Bacillus thuringiensis in transgenic chickpea for improved resistance to pod borer insect. Euphytica 182:87–102Google Scholar
  139. Melhorn V, Matsumi K, Koiwai H, Ikegami K, Okamoto M, Nambara E, Bittner F, Koshiba T (2008) Transient expression of AtNCED3 and AAO3 genes in guard cells causes stomatal closure in Vicia faba. J Plant Res 121:125–131PubMedGoogle Scholar
  140. Metry EA, Ismail RM, Hussien GM, Nasr El-Din TM, El-Itriby HA (2007) Regeneration an microprojectile-mediated transformation in Vicia faba L. Arab J Biotechnol 10:23–26Google Scholar
  141. Micallef MC, Austin S, Bingham ET (1995) Improvement of transgenic alfalfa by backcrossing. In Vitro Cell Dev Biol Plant 31:187–192Google Scholar
  142. Mikschofsky H, Schirrmeier H, Keil GM, Lange B, Polowick P, Keller W, Broer I (2009) Pea derived vaccines demonstrate high immunogenicity and protection in rabbits against haemorrhagic disease virus. Plant Biotechnol J 7:537–549PubMedGoogle Scholar
  143. Mishra N, Gupta PN, Khatri K, Goyal AK, Vyas SP (2008) Edible vaccines: a new approach to oral immunization. Indian J Biotechnol 7:283–294Google Scholar
  144. Mohan ML, Krishnamurthy KV (2003) Plant regeneration from decapitated mature embryo axis and Agrobacterium-mediated genetic transformation of pigeonpea. Biol Plant 46:519–527Google Scholar
  145. Molnár Z, Jenes B, Ördög VV (1999) Genetic transformation of pea (Pisum sativum L.) via particle bombardment. 3rd international symposium in the series recent advances in plant biotechnology, from cells to crops, September 4–10, Stara Lesna, Slovakia. Biologia 54(Suppl 7):50Google Scholar
  146. Molvig L, Tabe LM, Eggum BO, Moore AE, Craig S, Spencer D, Higgins TJV (1997) Enhanced methionine levels and increased nutritive value of seeds of transgenic lupins (Lupinus angustifolius L.) expressing a sunflower seed albumin gene. Proc Natl Acad Sci USA 94:8393–8398PubMedGoogle Scholar
  147. Monteiro M, Appezzato-da-Glória B, Valarini MJ, de Oliveira CA, Carneiro Vieira ML (2003) Plant regeneration from protoplasts of alfalfa (Medicago sativa) via somatic embryogenesis. Sci Agr 60:683–689Google Scholar
  148. Morton RL, Schroeder HE, Bateman K et al (2000) Bean α-amylase inhibitor 1 in transgenic peas (Pisum sativum) provides complete protection from pea weevil (Bruchus pisorum) under field conditions. Proc Natl Acad Sci USA 7:3820–3825Google Scholar
  149. Muruganantham M, Ganapathi A, Amutha S, Vengadesan G, Selvaraj N (2005) Shoot regeneration from immature cotyledons in blackgram [Vigna mungo (L.) Hepper]. Indian J Biotechnol 4:551–555Google Scholar
  150. Muruganantham M, Amutha S, Selvaraj N, Vengadesan G, Ganapathi A (2007) Efficient Agrobacterium-mediated transformation of Vigna mungo using immature cotyledonary-node explants and phosphinothricin as the selection agent. In Vitro Cell Dev Biol Plant 43:550–557Google Scholar
  151. Muruganantham M, Amutha S, Ganapathi A (2010) Somatic embryo productions by liquid shake culture of embryogenic calluses in Vigna mungo (L.) Hepper. In Vitro Cell Dev Biol Plant 46:34–40Google Scholar
  152. Muthukumar MM, Veluthambi K, Gnanam A (1996) Genetic transformation of cotyledon explants of cowpea (Vigna unguiculata L. Walp) using Agrobacterium tumefaciens. Plant Cell Rep 15:980–985Google Scholar
  153. Nadolska-Orczyk A, Orczyk W (2000) Study of the factors influencing Agrobacterium-mediated transformation of pea (Pisum sativum L.). Mol Breed 6:185–194Google Scholar
  154. Nagl W, Ignacimuthu S, Becker J (1997) Genetic engineering and regeneration of Phaseolus and Vigna. State of the art and new attempts. J Plant Physiol 150:625–644Google Scholar
  155. Neumann E, Rosenheck K (1973) An alternate explanation for permeability changes induced by electrical impulses in vesicular membrane. J Membr Biol 14:193–196Google Scholar
  156. Ninkovic S, Miljus-Djukic J, Neskovic M (1995) Genetic transformation of alfalfa somatic embryos and their clonal propagation through repetitive somatic embryogenesis. Plant Cell Tissue Organ Cult 42:255–260Google Scholar
  157. Ninkovic S, Miljus-Djukic J, Vinterhalter B, Neskovic M (2004) Improved transformation of alfalfa somatic embryos using a superbinary vector. Acta Biol Cracov Ser Bot 46:139–143Google Scholar
  158. Novoplant (2007)
  159. Oard JH, Paige DF, Simmonds JA, Gradziel TM (1990) Transient gene expression in maize, rice, and wheat cells using an airgun apparatus. Plant Physiol 92:334–339PubMedGoogle Scholar
  160. Ochatt SJ (2008) Flow cytometry in plant breeding. Cytometry A 73:581–598PubMedGoogle Scholar
  161. Ochatt SJ, Power JB (1992) Plant regeneration from cultured protoplasts of higher plants. In: Moo-Young M, Warren GS, Fowler MW (eds) Comprehensive biotechnology 2nd supplement. Pergamon Press, New York, pp 99–127Google Scholar
  162. Ochatt SJ, Chand PK, Rech EL, Davey MR, Power JB (1988) Electroporation mediated improvement of plant regeneration from Colt cherry (Prunus avium x pseudocerasus) protoplasts. Plant Sci 54:165–169Google Scholar
  163. Ochatt SJ, Mousset-Déclas C, Rancillac M (2000) Fertile pea plants regenerate from protoplasts when calluses have not undergone endoreduplication. Plant Sci 156:177–183PubMedGoogle Scholar
  164. Ochatt SJ, Muneaux E, Machado C, Jacas L, Pontécaille C (2001) The hyperhydricity of in vitro regenerants is linked with an abnormal DNA content in grass pea (Lathyrus sativus L.). J Plant Physiol 159:1021–1028Google Scholar
  165. Ochatt SJ, Delaitre C, Lionneton E, Huchette O, Patat-Ochatt EM, Kahane R (2005) One team, PCMV, and one approach, in vitro biotechnology, for one aim, the breeding of quality plants with a wide array of species. In: Ramdane Dris (ed) Crops: growth, quality and biotechnology. WFL Publisher, Helsinki, Finland, pp 1038–1067Google Scholar
  166. Ochatt SJ, Abirached-Darmency M, Marget P, Aubert G (2007) The Lathyrus paradox: “poor men’s diet” or a remarkable genetic resource for protein legume breeding? In: Ochatt SJ, Jain SM (eds) Breeding of neglected and under-utilised crops, spices and herbs. Science Press, Plymouth, pp 41–60Google Scholar
  167. Ochatt S, Pech C, Grewal R, Conreux C, Lulsdorf M, Jacas L (2009) Abiotic stress enhances androgenesis from isolated microspores of some legume species (Fabaceae). J Plant Physiol 166:1314–1328PubMedGoogle Scholar
  168. Oger P, Petit A, Dessaux Y (1996) A simple technique for direct transformation and regeneration of the diploid legume species Lotus japonicus. Plant Sci 116:159–168Google Scholar
  169. Olhoft PM, Somers DA (2001) l-Cysteine increases Agrobacterium-mediated T-DNA delivery into soybean cotyledonary-node cells. Plant Cell Rep 20:706–711Google Scholar
  170. Olhoft PM, Lin K, Galbraith J, Nielsen NC, Somers DA (2001) The role of thiol compounds in increasing Agrobacterium-mediated transformation of soybean cotyledonary-node cells. Plant Cell Rep 20:731–737Google Scholar
  171. Olhoft PM, Flagel LE, Donovan CM, Somers DA (2003) Efficient soybean transformation using hygromycin B selection in the cotyledonary-node method. Planta 216:723–735PubMedGoogle Scholar
  172. Padgette SR, Kolacz KH, Delannay X, Re DB, LaVallee BJ, Tinius CN, Rhodes WK, Otero YI, Barry GF, Eichholz DT (1995) Development, identification, and characterization of a glyphosat-tolerant syobean line. Crop Sci 35:1451–1461Google Scholar
  173. Padmanabhan P, Sahi SV (2009) Genetic transformation and regeneration of Sesbania drummondii using cotyledonary nodes. Plant Cell Rep 28:31–40PubMedGoogle Scholar
  174. Pal M, Ghosh U, Chandra M, Pal A, Biswas BB (1991) Transformation and regeneration of mung bean (Vigna radiata). Indian J Biochem Biophys 28:449–455PubMedGoogle Scholar
  175. Parrott WA, Hoffman LM, Hildebrand DF, Williams EG, Collins GB (1989) Recovery of primary transformants of soybean. Plant Cell Rep 7:615–617Google Scholar
  176. Pathak MR, Hamazah RY (2008) An effective method of sonication-assisted Agrobacterium-mediated transformation of chickpeas. Plant Cell Tissue Organ Cult 93:65–71Google Scholar
  177. Patil G, Deokar A, Jain PK, Thengane RJ, Srinivasan R (2009) Development of a phosphomannose isomerase-based Agrobacterium-mediated transformation system for chickpea (Cicer arietinum L.). Plant Cell Rep 28:1669–1676PubMedGoogle Scholar
  178. Paz MM, Shou H, Guo Z, Zhang Z, Banerjee AK, Wang K (2004) Assessment of conditions affecting Agrobacterium-mediated soybean transformation using the cotyledonary node explant. Euphytica 136:167–179Google Scholar
  179. Penney CA, Dr T, Dean SS, Walmsley AM (2011) Plant-made vaccines in support the Millenium Development Goals. Plant Cell Rep 30:789–798PubMedGoogle Scholar
  180. Penza R, Lurquin PF, Filippone E (1991) Gene transfer by cocultivation of mature embryos with Agrobacterium tumefaciens: application to cowpea (Vigna unguiculata Walp). J Plant Physiol 138:39–43Google Scholar
  181. Pereira LF, Erickson L (1995) Stable transformation of alfalfa (Medicago sativa L.) by particle bombardment. Plant Cell Rep 14:290–293Google Scholar
  182. Pigeaire A, Abernethy D, Smith PM, Simpson K, Fletcher N, Chin-Yi Lu, Atkins CA, Cornish E (1997) Transformation of a grain legume (Lupinus angustifolius L.) via Agrobacterium tumefaciens-mediated gene transfer to shoot apices. Mol Breed 3:341–349Google Scholar
  183. Pniewski T, Kapusta J (2005) Efficiency of transformation of Polish cultivars of pea (Pisum sativum L.) with various regeneration capacities by using hypervirulent Agrobacterium tumefaciens strains. J Appl Genet 46:139–147PubMedGoogle Scholar
  184. Pniewski T, Kapusta J, Plucienniczak A (2006) Agrobacterium-mediated transformation of yellow lupin to generate callus tissue producing HBV surface antigen in a long-term culture. J Appl Genet 47:309–318PubMedGoogle Scholar
  185. Polowick PL, Quandt J, Mahon JD (2000) The ability of pea transformation technology to transfer genes into peas adapted to western Canadian growing conditions. Plant Sci 153:161–170PubMedGoogle Scholar
  186. Polowick PL, Baliski DS, Mahon JD (2004) Agrobacterium tumefaciens-mediated transformation of chickpea (Cicer arietinum L.): gene integration, expression and inheritance. Plant Cell Rep 23:485–491PubMedGoogle Scholar
  187. Ponappa T, Brzozowski AE, Finer JJ (1999) Transient expression and stable transformation of soybean using the jellyfish green fluorescent protein. Plant Cell Rep 19:6–12Google Scholar
  188. Popelka JC, Gollasch S, Moore A, Molvig L, Higgins TJV (2006) Genetic transformation of cowpea (Vigna unguiculata L.) and stable transmission of the transgenes to progeny. Plant Cell Rep 25:304–312PubMedGoogle Scholar
  189. Pujol M, Gavilondo J, Ayala M, Rodríguez M, Gonzáles EM, Pérez L (2007) Fighting cancer with plant-expressed pharmaceuticals. Trends Biotechnol 25:455–459PubMedGoogle Scholar
  190. Puonti-Kaerlas J, Stabel P, Eriksson T (1989) Transformation of pea (Pisum sativurn L.) by Agrobacterium turnefaciens. Plant Cell Rep. 8:321–324.Google Scholar
  191. Puonti-Kaerlas J, Eriksson T, Engström P (1990) Production of transgenic pea (Pisum sativum L.) plants by Agrobacterium-mediated gene transfer. Theor Appl Genet 80:246–252Google Scholar
  192. Puonti-Kaerlas J, Ottosson A, Eriksson T (1992) Survival and growth of pea protoplasts after transformation by electroporation. Plant Cell Tissue Organ Cult 30:141–148Google Scholar
  193. Qiusheng Z, Bao J, Likun L, Xianhua X (2005) Effects of antioxidants on the plant regeneration and GUS expressive frequency of peanut (Arachis hypogaea) explants by Agrobacterium tumefaciens. Plant Cell Tissue Organ Cult 81:83–90Google Scholar
  194. Quecini VM, Oliveira CAd, Alves AC, Vieira MLC (2002) Factors influencing electroporation-mediated gene transfer to Stylosanthes guianensis (Aubl.) Sw. protoplasts. Genet Mol Biol 25:73–80Google Scholar
  195. Ramana RV, Venu CH, Jayashree T, Sadanandam A (1996) Direct somatic embryogenesis and transformation in Cicer arietinum. Indian J Exp Biol 34:716–718PubMedGoogle Scholar
  196. Rech EL, Ochatt SJ, Chand PK, Power JB, Davey MR (1987) Electro-enhancement of division of plant protoplast-derived cells. Protoplasma 141:169–176Google Scholar
  197. Rech EL, Ochatt SJ, Chand PK, Davey MR, Mulligan BJ, Power JB (1988) Electroporation increases DNA synthesis in cultured plant protoplasts. Nat Biotechnol 6:1091–1093Google Scholar
  198. Ribalta F, Croser J, Ochatt S (2012) Flow cytometry enables identification of sporophytic eliciting stress treatments in gametic cells. J Plant Physiol 169:104–110PubMedGoogle Scholar
  199. Rohini VK, Rao SK (2000) Transformation of peanut (Arachis hypogaea L.): a non-tissue culture based approach for generating transgenic plants. Plant Sci 150:41–49Google Scholar
  200. Rohini VK, Rao SK (2001) Transformation of peanut (Arachis hypogaea L.) with tobacco chitinase gene: variable response of transformants to leaf spot disease. Plant Sci 160:889–898PubMedGoogle Scholar
  201. Rose RJ, Nolan KE, Bicego L (1999) The development of the highly regenerable seed line Jemalong 2HA for transformation of Medicago truncatula-implications for regenerability via somatic embryogenesis. J Plant Physiol 155:788–791Google Scholar
  202. Rosellini D, Capomaccio S, Ferradini N, Savo Sardaro ML, Nicolia A, Veronesi F (2007) Non-antibiotic, efficient selection for alfalfa genetic engineering. Plant Cell Rep 26:1035–1044PubMedGoogle Scholar
  203. Russell DR, Wallace KM, Bathe JH, Martineli BJ, McCabe DE (1993) Stable transformation of Phaseolus vulgaris via electric-discharge mediated particle acceleration. Plant Cell Rep 12:165–169Google Scholar
  204. Saini R, Jaiwal KJ (2005) Transformation of a recalcitrant grain legume, Vigna mungo L. Hepper using Agrobacterium tumefaciens-mediated gene transfer to shoot apical meristem cultures. Plant Cell Rep 24:164–171PubMedGoogle Scholar
  205. Saini R, Jaiwal PK (2007) Agrobacterium tumefaciens-mediated transformation of blackgram: an assessment of factors influencing the efficiency of uidA gene transfer. Biol Plant 51:69–74Google Scholar
  206. Saini R, Jaiwal S, Jaiwal PK (2003) Stable genetic transformation of Vigna mungo L. Hepper via Agrobacterium tumefaciens. Plant Cell Rep 21:851–859PubMedGoogle Scholar
  207. Saini SR, Singh RP, Jaiwal PK (2007) Agrobacterium tumefaciens mediated transfer of Phaseolus vulgaris α-amylase inhibitor-1 gene into mungbean Vigna radiata (L.) Wilczek using bar as selectable marker. Plant Cell Rep 26:187–198PubMedGoogle Scholar
  208. Samac DA (1995) Strain specificity in transformation of alfalfa by Agrobacterium tumefaciens. Plant Cell Tissue Organ Cult 43:271–277Google Scholar
  209. Samac DA, Tesfaye M, Dornbusch M, Saruul P, Temple SJ (2004) A comparison of constitutive promoters for expression of transgenes in alfalfa (Medicago sativa). Transgenic Res 13:349–361PubMedGoogle Scholar
  210. Sangwan RS, Ochatt S, Nava-Saucedo JE, Sangwan-Norreel BS (2010) T-DNA insertion mutagenesis for gene cloning in plants. In: Shu Q, Nakagawa H, Forster B (eds) Mutation techniques in plants—principles and applications. Springer, Germany, pp 1–19Google Scholar
  211. Santarem ER, Trick HN, Essig JS, Finer JJ (1998) Sonication assisted Agrobacterium-mediated transformation of soybean immature cotyledons: optimization of transient expression. Plant Cell Rep 17:752–759Google Scholar
  212. Santos D, Fevereiro P (2002) Loss of DNA methylation affects somatic embryogenesis in Medicago truncatula. Plant Cell Tissue Organ Cult 70:155–161Google Scholar
  213. Sanyal I, Amla DV (2008) Genetic transformation of chickpea (Cicer arietinum L.) using cotyledonary node explants. In: Kirti PB (ed) Handbook of new technologies for genetic improvement of legumes. The Haworth Press, Taylor & Francis Group, Boca Raton, FL, pp 147–158Google Scholar
  214. Sarker RH, Biswas A, Mustafa BM, Mahbub S, Hoque MI (2003) Agrobacterium-mediated transformation of lentil (Lens culinaris Medik.). Plant Tissue Cult 13:1–12Google Scholar
  215. Sarmah BK, Moore A, Tate W, Molvig L, Morton RL, Rees DP, Chiaiese P, Chrispeels MJ, Tabe LM, Higgins TJV (2004) Transgenic chickpea plants expressing high levels of a bean α-amylase inhibitor. Mol Breed 14:73–82Google Scholar
  216. Sathyanarayana R, Kumar V, Ramesh CK, Parmesha M, Khan MHM (2012) A preliminary attempt for efficient genetic transformation and regeneration of legume Mucuna pruriens L. mediated by Agrobacterium tumefaciens. Turk J Biol 36:285–292Google Scholar
  217. Sato S, Newell C, Kolacz K, Tredo L, Finer J, Hinchee M (1993) Stable transformation via particle bombardment in two different soybean regeneration systems. Plant Cell Rep 12:408–413Google Scholar
  218. Sato H, Yamada T, Kita Y, Ishimoto M, Kitamura K (2007) Production of transgenic plants and their early seed set in Japanese soybean variety, Kariyutaka. Plant Biotechnol 5:533–536Google Scholar
  219. Scaramelli L, Balestrazzi A, Bonadei M, Piano E, Carbonera D, Confalonieri M (2009) Production of transgenic barrel medic (Medicago truncatula Gaernt.) using the ipt-type MAT vector system and impairment of Recombinase-mediated excision events. Plant Cell Rep 28:197–211PubMedGoogle Scholar
  220. Schaerer S, Pilet P-E (1991) Roots, explants and protoplasts from pea transformed with strains of Agrobacterium tumefaciens and rhizogenes. Plant Sci 78:247–258Google Scholar
  221. Scholte M, d’Erfurth I, Rippa R, Mondy S, Cosson V, Durand P, Breda B, Trinh H, Rodriguez-Llorente I, Kondorosi E, Schultze M, Kondorosi A, Ratet P (2002) T-DNA tagging in the model legume Medicago truncatula allows efficient gene discovery. Mol Breed 10:203–215Google Scholar
  222. Schroeder HE, Scholtz AH, Wardley-Richardson T, Spencer D, Higgins TJV (1993) Transformation and regeneration of two cultivars of pea (Pisum sativum L.). Plant Physiol 101:751–757PubMedGoogle Scholar
  223. Schroeder HE, Gollasch S, Tabe LM, Higgins TJV (1994) Recent advances in gene transfer to peas. Pisum Genet 26:1–5Google Scholar
  224. Senthil G, Williamson B, Dinkins RD, Ramsay G (2004) An efficient transformation system for chickpea (Cicer arietinum L.). Plant Cell Rep 23:297–303PubMedGoogle Scholar
  225. Shao C-Y, Russinova E, Iantcheva A, Atanassov A, McCormac A, Chen D-F, Elliott MC, Slater A (2000) Rapid transformation and regeneration of alfalfa (Medicago falcata L.) via direct somatic embryogenesis. Plant Growth Regul 31:155–166Google Scholar
  226. Sharma KK, Anjaiah V (2000) An effecient method for the production of transgenic plants of peanut through Agrobacterium mediated genetic transformation. Plant Sci 159:7–19PubMedGoogle Scholar
  227. Sharma KK, Lavanya M, Anjaiah V (2006) Agrobacterium-mediated production of transgenic pigeonpea (Cajanus cajan L. Millsp.) expressing the synthetic BT CRY1AB gene. In Vitro Cell Dev Biol Plant 42:165–173Google Scholar
  228. Siefkes-Boer HJ, Noognan MJ, Bullock DV, Conner AJ (1995) Hairy root transformation system in large-seeded grain legumes. Israel J Plant Sci 43:1–5Google Scholar
  229. Solleti SK, Bakshi S, Purkayastha J, Panda SK, Sahoo L (2008a) Transgenic cowpea (Vigna unguiculata) seeds expressing a bean a-amylase inhibitor 1 confer resistance to storage pests, bruchid beetles. Plant Cell Rep 27:1841–1850PubMedGoogle Scholar
  230. Solleti SK, Bakshi S, Sahoo L (2008b) Additional virulence genes in conjunction with efficient selection scheme, and compatible culture regime enhance recovery of stable transgenic plants in cowpea via Agrobacterium tumefaciens-mediated transformation. J Biotechnol 135:97–104PubMedGoogle Scholar
  231. Somers DA, Samac DA, Olhoft PM (2003) Recent advances in legume transformation. Plant Physiol 131:892–899PubMedGoogle Scholar
  232. Sonia, Saini R, Singh RP, Jaiwal PK (2007) Agrobacterium tumefaciens mediated transfer of Phaseolus vulgaris α-amylase inhibitor-1 gene into mungbean Vigna radiata (L.) Wilczek using bar as selectable marker. Plant Cell Rep 26 : 187–198.PubMedGoogle Scholar
  233. Spano L, Mariotti D, Pezzotti M, Damiani F, Arcioni S (1987) Hairy root transformation in alfalfa (Medicago sativa L.). Theor Appl Genet 73:523–530Google Scholar
  234. Srinivasan MT, Sharma RP (1991) Agrobacterium mediated genetic transformation of chickpea (Cicer arietinum). Indian J Exp Biol 29:758–761PubMedGoogle Scholar
  235. Stewart CN Jr, Adang MJ, All JN, Boerma HR, Cardineau C, Tucker D, Parrott WA (1996) Genetic transformation, recovery, and characterization of fertile soybean transgenic for a synthetic Bacillus thuringiensis cry/Ac gene. Plant Physiol 112:121–129PubMedGoogle Scholar
  236. Stiller J, Martirani L, Tuppale S, Chian R-J, Chiurazzi M, Gresshoff PM (1997) High frequency transformation and regeneration of transgenic plants in the model legume Lotus japonicus. J Exp Bot 48:1357–1365Google Scholar
  237. Suraninpong P (2002) Introduction and expression of cholesterol oxidase gene in a bacterium [Escherichia coli M15 (pREP4)] and mungbean [Vigna radiata (L.) Wilczek]. PhD Thesis, Suranare University of Technol, ISBN 974-533-213-5, 162 ppGoogle Scholar
  238. Suraninpong P, Chanprame S, Cho HJ, Widholm JM, Waranyuwat A (2004) Agrobacterium-mediated transformation of mungbean [Vigna radiata (L.) Wilczek]. Walailak J Sci Technol 1:38–48Google Scholar
  239. Surekha Ch, Arundhati A, Seshagiri Rao G (2007) Differential response of Cajanus cajan varieties to transformation with different strains of Agrobacterium. J Biol Sci 7:176–181Google Scholar
  240. Svabova L, Griga M (2008) The effect of cocultivation treatments on transformation efficiency in pea (Pisum sativum L.). Plant Cell Tissue Organ Cult 95:293–304Google Scholar
  241. Svabova L, Smykal P, Griga M, Ondrej V (2005) Agrobacterium-mediated transformation of Pisum sativum in vitro and in vivo. Biol Plant 49:361–370Google Scholar
  242. Svabova L, Smykal P, Griga M (2008) Agrobacterium-mediated transformation of pea (Pisum sativum L.): transformant production in vitro and by non-tissue culture approach. In: Kharkwal MC (ed) Food legumes for nutritional security and sustainable agriculture. IS-GPB, New Delhi, India, pp 208–220. ISBN 978-81-908995-2-9Google Scholar
  243. Tanaka H, Toyama J, Hashiguchi M, Kutsuna Y, Tsuruta S, Akashi R, Hoffmann F (2008) Transgenic superroots of Lotus corniculatus can be regenerated from superroot-derived leaves following Agrobacterium-mediated transformation. J Plant Physiol 165:1313–1316PubMedGoogle Scholar
  244. Tazeen S, Mirza B (2004) Factors affecting Agrobacterium tumefaciens mediated genetic transformation of Vigna radiata (L.) Wilczek. Pakistan J Bot 36:887–896Google Scholar
  245. Tesfaye M, Denton MD, Samac DA, Vance CP (2005) Transgenic alfalfa secretes a fungal endochitinase protein to the rhizosphere. Plant Soil 269:233–243Google Scholar
  246. Tewari-Singh N, Sen J, Kiesecker H, Reddy VS, Jacobsen HJ, Guha-Mukherjee S (2004) Use of a herbicide or lysine plus threonine for non-antibiotic selection of transgenic chickpea. Plant Cell Rep 22:576–583PubMedGoogle Scholar
  247. Thangjam R, Sahoo L (2012) In vitro regeneration and Agrobacterium tumefaciens-mediated genetic transformation of Parkia timoriana (DC.) Merr.: a multipurpose tree legume. Acta Physiol Plant 34:1207–1215Google Scholar
  248. Thomas MR, Rose RJ, Nolan KE (1992) Genetic transformation of Medicago truncatula using Agrobacterium with genetically modified Ri and disarmed Ti plasmids. Plant Cell Rep 11:113–117Google Scholar
  249. Thomas JC, Wasmann CC, Echt C, Dunn RL, Bohnert HJ, McCoy TJ (1994) Introduction and expression of an insect proteinase inhibitor in alfalfa (Medicago sativa L.). Plant Cell Rep 14:31–36Google Scholar
  250. Thu TT, Mai TTX, DewaeleE FS, Tadesse Y, Angenon G, Jacobs M (2003) In vitro regeneration and transformation of pigeonpea [Cajanus cajan (L.) Millsp]. Mol Breed 11:159–168Google Scholar
  251. Thykjaer T, Stiller J, Handberg K, Jones J, Stougaard J (1995) The maize transposable element Ac is mobile in the legume Lotus japonicus. Plant Mol Biol 27:981–993PubMedGoogle Scholar
  252. Thykjær T, Schauser L, Danielsen D, Finneman J, Stougaard J (1998) Transgenic plants: Agrobacterium-mediated transformation of the diploid legume Lotus japonicus. In: Celis JE, Carter N, Hunter T, Shotton D, Simon K, Small JV (eds) Cell biology: a laboratory handbook, vol 3, 2nd edn. Academic, New York, pp 518–525Google Scholar
  253. Tirichine L, Herrera-Cervera JA, Stougaard J (2005) Transformation-regeneration procedure for Lotus japonicus. In: Márquez AJ (ed) Lotus japoni handbook. Springer, Dordrecht, pp 279–284Google Scholar
  254. Tiwari S, Mishra DK, Singh A, Singh PK, Tuli R (2008) Expression of a synthetic cry1EC gene for resistance against Spodoptera litura in transgenic peanut (Arachis hypogaea L.). Plant Cell Rep 27:1017–1025PubMedGoogle Scholar
  255. Tiwari S, Tuli R (2012) Optimization of factors for efficient recovery of transgenic peanut (Arachis hypogaea L.). Plant Cell Tissue Organ Cult 109:111–121Google Scholar
  256. Torisky RS, Kovacs L, Avdiushko S, Newman JD, Hunt AG, Collins GB (1997) Development of a binary vector system for plant transformation based on the supervirulent Agrobacterium tumefaciens strain Chry5. Plant Cell Rep 17:102–108Google Scholar
  257. Townsend JA, Thomas LA (1996) Method of Agrobacterium-mediated transformation of cultured soybean cells. U.S. patent No. 5,563,055Google Scholar
  258. Trieu AT, Harrison MJ (1996) Rapid transformation of Medicago truncatula: regeneration via organogenesis. Plant Cell Rep 16:6–11Google Scholar
  259. Trieu AT, Burleigh SH, Kardailsky IV, Maldonado-Mendoza IE, Versaw WK, Blaylock LA, Shin H, Chiou T-J, Katagi H, Dewbre GR, Weigel D, Harrison MJ (2000) Transformation of Medicago truncatula via infiltration of seedlings or flowering plants with Agrobacterium. Plant J 22:531–541PubMedGoogle Scholar
  260. Trinh TH, Ratet P, Kondorosi E, Durand P, Kamaté K, Bauer P, Kondorosi A (1998) Rapid and efficient transformation of diploid Medicago truncatula and Medicago sativa ssp. falcata lines improved in somatic embryogenesis. Plant Cell Rep 17:345–355Google Scholar
  261. Udvardi MK, Tabata S, Parniske M, Stougaard J (2005) Lotus japonicus: legume research in the fast lane. Trends Plant Sci 10:222–228PubMedGoogle Scholar
  262. Uhde-Stone C, Liu J, Zinn KE, Allan DL, Vance CP (2005) Transgenic proteoid roots of white lupin: a vehicle for characterizing and silencing root genes involved in adaptation to P stress. Plant J 44:840–853PubMedGoogle Scholar
  263. Vaz Patto MC, Skiba B, Pang ECK, Ochatt SJ, Lambein F, Rubiales D (2006) Lathyrus improvement for resistance against biotic and abiotic stresses: from classical breeding to marker assisted selection. Euphytica 147:133–147Google Scholar
  264. Veltcheva M, Svetleva D, Sp P, Perl A (2005) In vitro regeneration and genetic transformation of common bean (Phaseolus vulgaris L.)—problems and progress. Sci Hort 107:2–10Google Scholar
  265. Vianna GR, Albino MMC, Dias BBA, de Mesquita SL, Rech EL, Aragão FJL (2004) Fragment DNA as vector for genetic transformation of bean (Phaseolus vulgaris L.). Sci Hort 99:371–378Google Scholar
  266. Wang A, Hanli F, Chong S, Ozias-Akins P (1998) Transformation of peanut with a soybean vspB promoter-uidA chimeric gene. I. Optimization of a transformation system and analysis of GUS expression in primary transgenic tissues and plants. Physiol Plant 102:38–48Google Scholar
  267. Wang J, Wang Y, Luo D (2010) LjCYC genes constitute floral dorsoventral asymmetry in Lotus japonicus. J Integr Plant Biol 52:959–970PubMedGoogle Scholar
  268. Warkentin TD, McHugen A (1993) Regeneration from lentil cotyledonary nodes and potential of this explant for transformation by Agrobacterium tumefaciens. Lens Newsl 20:26–28Google Scholar
  269. Warkentin TD, McHughen A (1991) Crown gall transformation of lentil (Lens culinaris Medik.) with virulent strains of Agrobacterium tumefaciens. Plant Cell Rep 10:489–493Google Scholar
  270. Warkentin TD, Jordan MC, Hobbs LA (1992) Effect of promoter-leader sequences on transient reporter gene expression in particle bombarded pea (Pisum sativum L.) tissues. Plant Sci 87:171–177Google Scholar
  271. Weeks JT, Ye J, Rommens CM (2008) Development of an in planta method for transformation of alfalfa (Medicago sativa). Transgenic Res 17:587–597PubMedGoogle Scholar
  272. Welham T, Domoney C (2000) Temporal and spatial activity of a promoter from a pea enzyme inhibitor gene and its exploitation for seed quality improvement. Plant Sci 159:289–299PubMedGoogle Scholar
  273. White DWR, Greenwood D (1987) Transformation of the forage legume Trifolium repens L. using binary Agrobacterium vectors. Plant Mol Biol 8:461–469Google Scholar
  274. Xinping YI, Deyue YU (2006) Transformation of multiple soybean cultivars by infecting cotyledonary-node with Agrobacterium tumefaciens. Afr J Biotechnol 5:1989–1993Google Scholar
  275. Yamada T, Watanabe S, Arai M, Harada K, Kitamura K (2010) Cotyledonary node pre-wounding with a micro-brush increased frequency of Agrobacterium-mediated transformation in soybean. Plant Biotechnol 27:217–220Google Scholar
  276. Yang H, Narin J, Ozias-Akins P (2003) Transformation of peanut using a modified bacterial mercuric ion reductase gene driven by an actin promoter from Arabidopsis thaliana. J Plant Physiol 160:945–952PubMedGoogle Scholar
  277. Youssef SS, Moghaieb REA, Saker MM, El Awady M, El Sharkawy A (2007) Transformation of faba bean (Vicia faba l.): a non-tissue culture based approach for generating transgenic plants. In Vitro Cell Dev Biol Anim 43:S28Google Scholar
  278. Zeng P, Vadnais DA, Zhang Z, Polacco JC (2004) Refined glufosinate selection in Agrobacterium-mediated transformation of soybean [Glycine max (L.) Merill]. Plant Cell Rep 22:478–482PubMedGoogle Scholar
  279. Zhang ZY, Coyne DP, Mitra A (1997) Factors affecting Agrobacterium-mediated transformation of common bean. J Am Soc Hort Sci 122:300–305Google Scholar
  280. Zhang H, Huang Q-M, Su J (2010) Development of alfalfa (Medicago sativa L.) regeneration system and Agrobacterium-mediated genetic transformation. Agric Sci China 9:170–178Google Scholar
  281. Zhou X, Chandrasekharan MB, Hall TC (2004) High rooting frequency and functional analysis of GUS and GFP expression in transgenic Medicago truncatula A17. New Phytol 162:813–822Google Scholar
  282. Zimmerman J, Saalbach I, Jahn D, Giersberg M, Haehnel S, Wedel J, Macek J, Zoufal K, Glünder G, Falkenburg D, Kipryanov SM (2009) Antibody expressing pea seeds as fodder for prevention of gastrointestinal parasiti infections in chickens. BMC Biotechnol 9:79Google Scholar
  283. Zinn KE, Liu J, Allan DL, Vance CP (2009) White lupin (Lupinus albus) response to phosphorus stress: evidence for complex regulation of LaSAP1. Plant Soil 322:1–15Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • R. M. Atif
    • 1
  • E. M. Patat-Ochatt
    • 1
  • L. Svabova
    • 2
  • V. Ondrej
    • 3
  • H. Klenoticova
    • 2
  • L. Jacas
    • 1
  • M. Griga
    • 2
  • S. J. Ochatt
    • 1
    Email author
  1. 1.Laboratoire de Physiologie Cellulaire, Morphogenèse et Validation, INRA, UMR1347 Pôle GEAPSICentre de Recherches INRA de DijonDijon CedexFrance
  2. 2.Plant Biotechnology DepartmentAgritec Ltd.SumperkCzech Republic
  3. 3.Department of BotanyPalacky UniversityOlomoucCzech Republic

Personalised recommendations