Skip to main content

Identifying Geographically Based Metapopulations for Development of Plant Materials Indigenous to Rangeland Ecosystems of the Western USA

  • Chapter
  • First Online:
Progress in Botany

Part of the book series: Progress in Botany ((BOTANY,volume 74))

  • 1362 Accesses

Abstract

Rangeland ecosystems account for about half of the earth’s land surface. They play an important role in providing forage for livestock and wildlife, and they serve as critical watershed areas. Many of the world’s rangelands have been degraded by overgrazing, marginal crop production, mineral and energy extraction, recreation, and other human-caused disturbances. This degradation has led to invasion by exotic weeds and subsequent increases in fire frequency. This, in combination with uncertainties associated with global climatic change, has resulted in a critical need for plant materials to restore and revegetate rangeland ecosystems. The assessment of genetic variation and its phenotypic expression in important rangeland plant species (especially forbs) is critical in defining population structures (genetically differentiated groups) that could be used in rangeland restoration/revegetation efforts. We used common-garden studies and DNA-based analysis of genetic variation to assess genetic diversity in three rangeland legume species indigenous to rangeland ecosystems of the Great Basin Region of the western USA. Results of these studies are presented as three case studies that describe data collection procedures, analysis, and interpretation used to identify population structures in each species. These data formed the basis for combining plant collections into geographically based metapopulations for these three legume species that are being used to develop plant materials for commercial seed production and subsequent use on rangelands of the Great Basin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albaladejo RG, Carrillo LF, Aparicio A, Fernández-Manjarrés JF, González-Varo JP (2009) Population genetic structure in Myrtus communis L. in a chronically fragmented landscape in the Mediterranean: can gene flow counteract habitat perturbation? Plant Biol 11:442–453

    Article  PubMed  CAS  Google Scholar 

  • Alderson J, Sharp WC (1994) Grass varieties in the United States. Agriculture Handbook No. 170, USDA Soil Conservation Service, Washington, DC, pp 1–296

    Google Scholar 

  • Allen VG, Batello C, Berretta EJ, Hodgson J, Kothmann M, Li X, McIvor J, Milne J, Morris C, Peeters A, Sanderson M (2011) An international terminology for grazing lands and grazing animals. Grass Forage Sci 66:2–28

    Article  Google Scholar 

  • Aydin I, Uzun F (2005) Nitrogen and phosphorus fertilization of rangelands affects yield, forage quality and the botanical composition. Eur J Agron 23:8–14

    Article  CAS  Google Scholar 

  • Barneby RC (1977) Dalea imagines. Mem N Y Bot Gard 27:1–892

    Google Scholar 

  • Barneby RC (1989) Vascular plants of the Intermountain West, U.S.A. In: Cronquist A, Holmgren AH, Holmgren NH, Reveal JL, Holmgren PK (eds) Intermountain flora. New York Botanical Garden, Bronx, NY, p 78

    Google Scholar 

  • Barnes RF, Nelson CJ, Moore KJ, Collins M (eds) (2007) Forages: the science of grassland agriculture, 6th edn. Blackwell, London, pp 1–791

    Google Scholar 

  • Bhattarai K, Johnson DA, Jones TA, Connors KJ, Gardner DR (2008) Physiological and morphological characterization of basalt milkvetch (Astragalus filipes): basis for plant improvement. Rangeland Ecol Manage 61:444–455

    Article  Google Scholar 

  • Bhattarai K, Bushman BS, Johnson DA, Carman JG (2010) Phenotypic and genetic characterization of western prairie clover collections from the western United States. Rangeland Ecol Manage 63:696–706

    Article  Google Scholar 

  • Bhattarai K, Bushman BS, Johnson DA, Carman JG (2011) Searls prairie clover (Dalea searlsiae) for rangeland revegetation: phenotypic and genetic evaluations. Crop Sci 51:716–727

    Article  Google Scholar 

  • Bohonak AJ (2002) IBD (Isolation by Distance): a program for analyses of isolation by distance. J Hered 93:153–154

    Article  PubMed  CAS  Google Scholar 

  • Bower A, St. Clair JB, Erickson VJ (2010) Provisional seed zones for native plants. http://www.fs.fed.us/wildflowers/nativeplantmaterials/rightmaterials.shtml. Cited 11 Aug 2011

  • Broadhurst LM, Lowe A, Coates DJ, Cunningham AA, McDonald M, Vesk PA, Yates C (2008) Seed supply for broadscale restoration: maximizing evolutionary potential. Evol Appl 1:587–597

    Google Scholar 

  • Brown RW, Amacher MC (1999) Selecting plant species for ecological restoration: a perspective for land managers. In: Holzworth LK, Brown RW (comps) Revegetation with native species: proceedings, 1997 Society for Ecological Restoration annual meeting, Fort Lauderdale, Florida, 12–15 Nov 1997. Proceedings RMRS-P-8, USDA Forest Service Rocky Mountain Research Station, Ogden, UT, pp 1–16

    Google Scholar 

  • Bryce SA, Omernik JM, Larsen DP (1999) Ecoregions – a geographic framework to guide risk characterization and ecosystem management. Environ Pract 1:141–155

    Article  Google Scholar 

  • Bushman BS, Larson SL, Peel MD, Pfrender ME (2007) Population structure and genetic diversity in North American Hedysarum boreale Nutt. Crop Sci 47:1281–1286

    Article  CAS  Google Scholar 

  • Bushman BS, Bhattarai K, Johnson DA (2010) Population structure of Astragalus filipes collections from western North America. Botany 88:565–574

    Article  Google Scholar 

  • Caldwell MM, Richards JH, Johnson DA, Nowak RS, Dzurec RS (1981) Coping with herbivory: photosynthetic capacity and resource allocation in two semiarid Agropyron bunchgrasses. Oecologia 50:14–24

    Article  Google Scholar 

  • Chambers JC (2008a) Climate change and the Great Basin. In: Chambers JC, Devoe N, Evenden A (eds) Collaborative management and research in the Great Basin – examining the issues and developing a framework for action. General Technical Report RMRS-GTR-204. USDA Forest Service, Rocky Mountain Research Station, Fort Collins, CO, pp 29–32

    Google Scholar 

  • Chambers JC (2008b) Invasive plant species and the Great Basin. In: Chambers JC, Devoe N, Evenden A (eds) Collaborative management and research in the Great Basin – examining the issues and developing a framework for action. General Technical Report RMRS-GTR-204. USDA Forest Service, Rocky Mountain Research Station, Fort Collins, CO, pp 38–41

    Google Scholar 

  • Cherney JH, Allen VG (1995) Forages in a livestock system. In: Barnes RF, Miller DA, Nelson CJ (eds) Forages: the science of grassland agriculture, vol 1. Iowa State University Press, Ames, IA, pp 175–188

    Google Scholar 

  • Clausen J, Keck DD, Hiesey WM (1940) Experimental studies on the nature of species. I. Effect of varied environments on western North American plants. Carnegie Institution of Washington Publication No. 520. Washington, DC, pp 1–452

    Google Scholar 

  • Clausen J, Keck DD, Hiesey WM (1941) Regional differentiation in plant species. Am Nat 75:231–250

    Article  Google Scholar 

  • Collins S, Stritch LE (2008) Caring for our natural assets: an ecosystem services perspective. In: Deal R (ed) Integrated restoration of forested ecosystems to achieve multiresource benefits. Proceedings of the 2007 National Silviculture Workshop. USDA Forest Service, Pacific Northwest Research Station, Portland, OR, pp 1–11

    Google Scholar 

  • Comstock JP, Ehleringer JR (1992) Plant adaptation in the Great Basin and Colorado Plateau. Great Basin Nat 52:195–215

    Google Scholar 

  • Crnokrak P, Roff DA (1995) Dominance variance: associations with selection and fitness. Heredity 75:530–540

    Article  Google Scholar 

  • Dice LR (1945) Measures of the amount of ecologic association between species. Ecology 26:297–302

    Article  Google Scholar 

  • Dinno A (2010) Paran: Horn’s test of principal component/factors. http://CRAN.R-project.org/package=paran. Cited 8 Aug 2011

  • Endler JA (1986) Natural selection in the wild. Princeton University Press, Princeton, NJ, pp 1–358

    Google Scholar 

  • Enjalbert J, Goldringer I, Paillard S, Brabant P (1999) Molecular markers to study genetic drift and selection in wheat populations. J Exp Bot 50:283–290

    CAS  Google Scholar 

  • Ersts PJ (2009) Geographic distance matrix generator. Available at http://biodiversityinformatics.amnh.org/open_source/gdmg. Cited 8 Aug 2011

  • Excoffier L, Laval G, Schneider S (2005) Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinformatics Online 1:47–50

    CAS  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2007) Inference of population structure using multilocus genotype data: dominant markers and null alleles. Mol Ecol Notes 7:574–578

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein J (2009) PHYLIP (Phylogeny Inference Package) version 3.69. Distributed by Author, Department of Genome Sciences, University of Washington, Seattle, WA

    Google Scholar 

  • Franceschinelli EV, Kesseli R (1999) Population structure and gene flow of the Brazilian shrub Helicteres brevispira. Heredity 82:355–363

    Article  PubMed  Google Scholar 

  • Hobbs RJ, Arico S, Aronson J, Baron JS, Bridgewater P, Cramer VA, Epstein PR, Ewel JJ, Klink CA, Lugo AE, Norton D, Ojima D, Richardson DM, Sanderson EW, Valladares F, Vila M, Zamora R, Zobel M (2006) Novel ecosystems: theoretical and management aspects of the new ecological world order. Global Ecol Biogeogr 15:1–7

    Article  Google Scholar 

  • Holechek JL, Pieper RD, Herbel CH (2010) Range management: principles and practices, 6th edn. Prentice Hall, Englewood Cliffs, NJ, pp 1–444

    Google Scholar 

  • Horn JL (1965) A rationale and test for the number of factors in factor analysis. Psychometrika 30:179–185

    Article  PubMed  CAS  Google Scholar 

  • Hufford KM, Mazer SJ (2003) Plant ecotypes: genetic differentiation in the age of ecological restoration. Trends Ecol Evol 18:147–155

    Article  Google Scholar 

  • Isely D (1998) Native and naturalized Leguminosae (Fabaceae) of the United States. Brigham Young University, Provo, UT, pp 1–1007

    Google Scholar 

  • Jensen JL, Bohonak AJ, Kelley ST (2005) Isolation by distance, web service. BMC Genet 6:13

    Article  PubMed  Google Scholar 

  • Jessop BD, Anderson VJ (2007) Cheatgrass invasion in salt desert shrublands: benefits of postfire reclamation. Rangeland Ecol Manage 60:235–243

    Article  Google Scholar 

  • Johnson DA, Rumbaugh MD, Asay KH (1981) Plant improvement for semi-arid rangelands: possibilities for drought resistance and nitrogen fixation. Plant Soil 58:279–303

    Article  CAS  Google Scholar 

  • Johnson DA, Jones TA, Connors KJ, Bhattarai K, Bushman BS, Jensen KB (2008) Notice of release of NBR-1 germplasm basalt milkvetch. Native Plants J 9:127–132

    Article  Google Scholar 

  • Johnson R, Stritch L, Olwell P, Lambert S, Horning ME, Cronn R (2010a) What are the best seed sources for ecosystem restoration on BLM and USFS lands? Native Plants J 11:117–131

    Article  Google Scholar 

  • Johnson RC, Erickson VJ, Mandel NL, St. Clair JB, Vance-Borland KW (2010b) Mapping genetic variation and seed zones for Bromus carinatus in the Blue Mountains of eastern Oregon, USA. Botany 88:725–736

    Article  Google Scholar 

  • Johnson DA, Bushman BS, Bhattarai K, Connors KJ (2011) Notice of release of Majestic germplasm and Spectrum germplasm western prairie clover. Native Plants J 12:249–256

    Google Scholar 

  • Jones TA (2003) The Restoration Gene Pool concept: beyond the native vs non-native debate. Restor Ecol 11:281–290

    Article  Google Scholar 

  • Jones TA, Johnson DA (1998) Invited synthesis paper: integrating genetic concepts into planning rangeland seedings. J Range Manage 51:594–606

    Article  Google Scholar 

  • Jones TA, Monaco TA (2007) A restoration practitioner’s guide to the Restoration Gene Pool concept. Ecol Restor 25:12–19

    Article  Google Scholar 

  • Jones TA, Monaco TA (2009) A role for assisted evolution in designing native plant materials for domesticated landscapes. Front Ecol Environ 7:541–547

    Article  Google Scholar 

  • Jones TA, Larson SR, Wilson BL (2008) Genetic differentiation and hybridization among Festuca idahoensis, F. roemeri, and F. ovina detected from AFLP, ITS, and chloroplast DNA. Botany 86:422–434

    Article  CAS  Google Scholar 

  • Kittlein MJ, Gaggiotti OE (2008) Interactions between environmental factors can hide isolation by distance patterns: a case study of Ctenomys rionegrensis in Uruguay. Proc R Soc Lond B Biol Sci 275:2633–2638

    Article  Google Scholar 

  • Landres PB, Morgan P, Swanson FJ (1999) Overview of the use of natural variability concepts in managing ecological systems. Ecol Appl 9:1179–1188

    Google Scholar 

  • Larson SR, Jones TA, Jensen KB (2004) Population structure in Pseudoroegneria spicata (Poaceae: Triticeae) modeled by Bayesian clustering of AFLP genotypes. Am J Bot 91:1789–1801

    Article  PubMed  CAS  Google Scholar 

  • Leonard AC, Franson SE, Hertzberg VS, Smith MK, Toth GP (1999) Hypothesis testing with the similarity index. Mol Ecol 8:2105–2114

    Article  PubMed  CAS  Google Scholar 

  • Lesica P, Allendorf FW (1999) Ecological genetics and the restoration of plant communities: mix or match? Restor Ecol 7:42–50

    Article  Google Scholar 

  • Levin SA (1992) The problem of pattern and scale in ecology. Ecology 73:1943–1967

    Article  Google Scholar 

  • Liao C, Peng R, Luo Y, Zhou X, Wu X, Fang C, Chen J, Li B (2008) Altered ecosystem carbon and nitrogen cycles by plant invasion: a meta-analysis. New Phytol 177:706–714

    Article  PubMed  CAS  Google Scholar 

  • Licciardi JM, Clark PU, Brook EJ, Elmore D, Sharma P (2004) Variable responses of western U.S. glaciers during the last deglaciation. Geology 32:81–84

    Article  CAS  Google Scholar 

  • Madison LA, Robel RJ (2001) Energy characteristics and consumption of several seeds recommended for northern bobwhite food plantings. Wildlife Soc Bull 29:1219–1227

    Google Scholar 

  • Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220

    PubMed  CAS  Google Scholar 

  • McKay JK, Latta G (2002) Adaptive population divergence: markers, QTL and traits. Trends Ecol Evol 17:185–291

    Article  Google Scholar 

  • McKay JK, Christian CE, Harrison SP, Rice KJ (2005) “How local is local?” – a review of practical and conceptual issues in the genetics of restoration. Restor Ecol 1:432–440

    Article  Google Scholar 

  • McMahon G, Gregonis SM, Waltman SW, Omernik JM, Thorson TD, Freeouf JA, Rorick AH, Keys JE (2001) Developing a spatial framework of common ecological regions for the conterminous United States. Environ Manage 28:293–316

    Article  PubMed  CAS  Google Scholar 

  • Merila J, Crnokrak P (2001) Comparison of genetic differentiation at marker loci and quantitative traits. J Evol Biol 14:892–903

    Article  Google Scholar 

  • Meudt HM, Clarke AC (2007) Almost forgotten or latest practice? AFLP applications, analyses and advances. Trends Plant Sci 12:106–117

    Article  PubMed  CAS  Google Scholar 

  • Millar CI, Libby WJ (1989) Disneyland or native ecosystem: genetics and the restorationist. Restor Manage Notes 7:18–24

    Google Scholar 

  • Miller SA, Bartow A, Gisler M, Ward K, Young AS, Kaye TN (2011) Can an ecoregion serve as a seed transfer zone? Evidence from a common garden study with five native species. Restor Ecol 19:268–276

    Article  Google Scholar 

  • Murphy DD (1989) Conservation and confusion: wrong species, wrong scale, wrong conclusions. Conserv Biol 3:82–84

    Article  Google Scholar 

  • Norton JB, Monaco TA, Norton U (2007) Mediterranean annual grasses in western North America: kids in a candy store. Plant Soil 298:1–5

    Article  CAS  Google Scholar 

  • Oksanen J, Blanchet FG, Kindt R, Legendre P, O’Hara RB, Simpson GL, Solymos P, Henry M, Stevans H, Wagner H (2010) Vegan: community ecology package. http://CRAN.R-project.org/package=vegan. Cited 8 Aug 2011

  • Omernik JM (1987) Ecoregions of the conterminous United States. Map (scale 1:7,500,000). Ann Assoc Am Geogr 77:118–125

    Article  Google Scholar 

  • Omernik JM (1995) Ecoregions: a spatial framework for environmental management. In: Davis WS, Simon TP (eds) Biological assessment and criteria: tools for water resource planning and decision making. Lewis Publishers, Boca Raton, FL, pp 49–62

    Google Scholar 

  • Omernik JM, Chapman SS, Lillie RA, Dumke RT (2000) Ecoregions of Wisconsin. Trans Wis Acad Sci Arts Lett 88:77–103

    Google Scholar 

  • Ouborg NJ, Vergeer P, Mix C (2006) The rough edges of the conservation genetics paradigm for plants. J Ecol 94:1233–1248

    Article  Google Scholar 

  • Oviatt CG (1997) Lake Bonneville fluctuations and global climate change. Geology 25:155–158

    Article  CAS  Google Scholar 

  • Pellant M, Abbey B, Karl S (2004) Restoring the Great Basin Desert, U.S.A.: integrating science, management and people. Environ Monit Assess 99:169–179

    Article  Google Scholar 

  • Phillips NC, Larson SR, Drost DT (2008) Detection of genetic variation in wild populations of three Allium species using amplified fragment length polymorphisms. HortScience 43:637–643

    Google Scholar 

  • Pierson FB, Williams CJ, Hardegree SP, Weltz MA, Stone JJ, Clark PE (2011) Fire, plant invasions, and erosion events on western rangelands. Rangeland Ecol Manage 64:439–449

    Article  Google Scholar 

  • Pokorny ML, Sheley RL, Zabinski CA, Engel RE, Svejcar TJ, Brokowski JJ (2005) Plant functional group diversity as a mechanism for invasion resistance. Restor Ecol 13:448–459

    Article  Google Scholar 

  • Raspe O, Jacquemart AL (1998) Allozyme diversity and genetic structure of European populations of Sorbus aucuparia L. (Rosaceae: Maloideae). Heredity 81:537–545

    Article  CAS  Google Scholar 

  • Ray C (2001) Maintaining genetic diversity despite local extinctions: effects of population scale. Biol Conserv 100:3–14

    Article  Google Scholar 

  • Rice KJ, Emery NC (2003) Managing microevolution: restoration in the face of global change. Front Ecol Environ 1:469–478

    Article  Google Scholar 

  • Richards RT, Chambers JC, Ross C (1998) Use of native plants on federal lands: policy and practice. J Range Manage 51:625–632

    Article  Google Scholar 

  • Robins JG, Jensen KB, Jones TA, Waldron BL, Peel M, Rigby CW, Vogel KP, Mitchell R, Palazzo AJ, Cary TJ (2012) Establishment and persistence of perennial cool-season grasses in the Intermountain West and Central and Northern Great Plains. Rangeland Ecol Manage (in press)

    Google Scholar 

  • Rogers DL, Montalvo AM (2004) Genetically appropriate choices for plant materials to maintain biological diversity. Report to the USDA Forest Service, Rocky Mountain Region, Lakewood, CO. http://www.fs.fed.us/r2/publications/botany/plantgenetics.pdf. Cited 10 Aug 2011

  • Rohlf FJ (1998) NTSYSpc numerical taxonomy and multivariate analysis system version 2.0. Exeter Software, Setauket, NY, pp 1–31

    Google Scholar 

  • Roundy BA, Shaw NL, Booth DT (1997) Using native species on rangeland. In: Roundy BA, Shaw NL (comps) Proceedings: using seeds of native species on rangelands, Rapid City, SD, 16–21 Feb 1997. General Technical Report INT-GTR-372, USDA Forest Service, Rocky Mountain Research Station, Ogden, UT, pp 1–8

    Google Scholar 

  • Rumbaugh MD (1983) Legumes—their use in wildland plantings. In: Monsen SB, Shaw NL (eds) Managing Intermountain rangelands—improvement of range and wildlife habitats. General Technical Report INT-157, USDA Forest Service, Rocky Mountain Research Station, Ogden, UT, pp 115–122

    Google Scholar 

  • Saetre P, Stark JM (2005) Microbial dynamics and carbon and nitrogen cycling following re-wetting of soils beneath two semi-arid plant species. Oecologia 142:247–260

    Article  PubMed  Google Scholar 

  • SAS Institute (2004) SAS/STAT 9.1 user’s guide. SAS Institute, Inc., Cary, NC, pp 1–5136

    Google Scholar 

  • Schlötterer C (2004) The evolution of molecular markers – just a matter of fashion? Nat Rev Genet 5:63–69

    Article  PubMed  Google Scholar 

  • Schneider S, Roessli D, Excoffier L (2000) Arlequin, version 2.0: a software for population genetics analysis. University of Geneva, Geneva, Switzerland

    Google Scholar 

  • Sgrò CM, Lowe AJ, Hofmann AA (2011) Building evolutionary resilience for conserving biodiversity under climate change. Evol Appl 4:326–337

    Article  Google Scholar 

  • Sheley RL, Carpinelli MF (2005) Creating weed-resistant plant communities using niche-differentiated nonnative species. Rangeland Ecol Manage 58:480–488

    Article  Google Scholar 

  • Sheley R, Mangold J, Goodwin K, Marks J (2008) Revegetation guidelines for the Great Basin: considering invasive weeds. ARS-168. U.S. Department of Agriculture, Agricultural Research Service, Washington, DC, pp 1–52

    Google Scholar 

  • Slatkin M (1993) Isolation by distance in equilibrium and non-equilibrium populations. Evolution 47:264–279

    Article  Google Scholar 

  • Smith SL, Sher AA, Grant TA III (2007) Genetic diversity in restoration materials and the impacts of seed collection in Colorado’s restoration plant production industry. Restor Ecol 15:369–374

    Article  Google Scholar 

  • St. Clair JB, Mandel NL, Vance-Borland KW (2005) Genecology of Douglas fir in western Oregon and Washington. Ann Bot 96:1199–1214

    Article  PubMed  Google Scholar 

  • Stein B, Kutner LS, Adams JS (eds) (2000) Precious heritage: the status of biodiversity in the United States. Oxford University Press, New York, NY, pp 1–399

    Google Scholar 

  • Stöcklin J, Kuss P, Pluess AR (2009) Genetic diversity, phenotypic variation and local adaptation in the alpine landscape: case studies with alpine plant species. Bot Helv 119:125–133

    Article  Google Scholar 

  • U.S. Environmental Protection Agency (2011) Level III and IV Ecoregions of the continental United States. http://www.epa.gov/wed/pages/ecoregions/level_iii_iv.htm. Cited 8 Aug 2011

  • U.S. Geological Survey (2011) The Great Basin and Columbia Plateau. http://www.nbii.gov/portal/server.pt/community/what_is_the_great_basin/619. Cited 16 Aug 2011

  • USDA Forest Service (2010) Great Basin Native Plant Selection and Increase Project FY2010 Progress Report. http://www.fs.fed.us/rm/boise/research/shrub/projects/documents/2010_ProgressReport.pdf. Cited 8 Aug 2011

  • USDA Forest Service (2011) Seed zone mapper. http://www.fs.fed.us/wwetac/threat_map/SeedZones_Intro.html. Cited 10 Aug 2011

  • USDA Natural Resources Conservation Service (2009) The PLANTS Database. National Plant Data Center, Baton Rouge, LA, http://plants.usda.gov/java/. Cited 8 Aug 2011

  • USDI Bureau of Land Management (2009) Native Plants Materials Development Program: progress report for FY2001-2007. http://www.blm.gov/pgdata/etc/medialib/blm/wo/Planning_and_Renewable_Resources/fish__wildlife_and/rare_plants_2.Par.42700.File.dat/NativePlantProgressReport2001-2007.pdf. Cited 31 Aug 2011

  • Vekemans X, Beauwens T, Lemaire M, Roldan-Ruiz I (2002) Data from amplified fragment length polymorphism (AFLP) markers show indication of size homoplasy and of a relationship between degree of homoplasy and fragment size. Mol Ecol 11:139–151

    Article  PubMed  CAS  Google Scholar 

  • Vogel KP, Schmer MR, Mitchell RB (2005) Plant adaptation regions: ecological and climatic classification of plant materials. Rangeland Ecol Manage 58:315–319

    Article  Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    Article  PubMed  CAS  Google Scholar 

  • Walker SC, Shaw NL (2005) Current and potential use of broadleaf herbs for reestablishing native communities. In: Shaw NL, Pellant M, Monsen SB (comps) Sage-grouse habitat restoration symposium proceedings, 4–7 June 2001, Boise, ID. Proceedings RMRS-P-38, USDA Forest Service, Rocky Mountain Research Station, Fort Collins, CO, pp 56–61

    Google Scholar 

  • Ward K, Gisler M, Fiegener R, Young A (2008) The Willamette Valley Seed Increase Program. Nat Plants J 9:334–350

    Google Scholar 

  • Weeks AR, Sgro CM, Young AG, Frankham R, Mitchell NJ, Miller KA, Byrne M, Coates DJ, Eldridge MDB, Sunnucks P, Breed MF, James EA, Hoffman AA (2011) Assessing the benefits and risks of translocations in changing environments: a genetic perspective. Evol Appl (early view; http://onlinelibrary.wiley.com/doi/10.1111/j.1752-4571.2011.00192.x/pdf)

  • Welsh SL, Atwood ND, Goodrich S, Higgins LC (1993) A Utah flora. Provo, UT, pp 1–912

    Google Scholar 

  • Whisenant SG (1990) Changing fire frequencies on Idaho’s Snake River Plains: ecological and management implications. In: McArthur ED, Romney EM, Smith SD, Tueller PT (eds) Proceedings- symposium on cheatgrass invasion, shrub die-off, and other aspects of shrub biology and management. General Technical Report INT-276, USDA Forest Service, Ogden, UT, pp 4–7

    Google Scholar 

  • Wiens JA (1989) Spatial scaling in ecology. Funct Ecol 3:385–397

    Article  Google Scholar 

  • Wiken E (1986) Terrestrial ecozones of Canada. Ecological Land Classification Series No. 19. Environment Canada. Ottawa, Canada

    Google Scholar 

  • Williams MC (1981) Nitro compounds in foreign species of Astragalus. Weed Sci 29:261–269

    CAS  Google Scholar 

  • Williams MC, James LF (1975) Toxicity of nitro-containing Astragalus to sheep and chicks. J Range Manage 28:260–263

    Article  Google Scholar 

  • Wojciechowski MF, Sanderson MJ, Hu J (1999) Evidence on the monophyly of Astragalus (Fabaceae) and its major subgroups based on nuclear ribosomal DNA ITS and chloroplast DNA trnL intron data. Syst Bot 24:409–437

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas A. Johnson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Johnson, D.A., Bushman, B.S., Jones, T.A., Bhattarai, K. (2013). Identifying Geographically Based Metapopulations for Development of Plant Materials Indigenous to Rangeland Ecosystems of the Western USA. In: Lüttge, U., Beyschlag, W., Francis, D., Cushman, J. (eds) Progress in Botany. Progress in Botany, vol 74. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30967-0_10

Download citation

Publish with us

Policies and ethics