Skip to main content

Electronic Raman Spectroscopy

  • Chapter
  • First Online:
Book cover Theory of Bilayer Graphene Spectroscopy

Part of the book series: Springer Theses ((Springer Theses))

  • 1354 Accesses

Abstract

As discussed in Sect. 4.3, experimental measurements of the bilayer graphene Landau level structure with infrared absorption showed that tight-binding description for neutral bilayer is unable to describe all the important physics. Some theoretical explanations were suggested, based both on many-body effects and charging effects, but the issue has not yet been clarified. It would be therefore beneficial to have at one’s disposal another probe of the Landau level structure but with different selection rules. Then, electronic excitations between different pairs of levels would be measured. This could help gain more insight into the physics of the problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For further benefit, we treat \(\varvec{q}\) and \(\tilde{\varvec{q}}\) as two-dimensional and in the plane of the sample. The third, out-of-plane component, only becomes explicitly important in Eq. (5.3).

  2. 2.

    In the integration over the electronic momentum \(\mathbf p \) we neglected the trigonal warping of the electronic dispersion caused by \(v_{3}\). As discussed in Sect. 2.3, it is only important for very low energies. The density of states, apart from the vicinity of the Lifshitz transition, remains almost unaffected (see Fig. 2.5).

References

  1. E.A. Henriksen, Z. Jiang, L.-C. Tung, M.E. Schwartz, M. Takita, Y.-J. Wang, P. Kim, H.L. Stormer, Cyclotron resonance in bilayer graphene. Phys. Rev. Lett. 100, 087403 (2008)

    Article  ADS  Google Scholar 

  2. D.S.L. Abergel, T. Chakraborty, Long-range Coulomb interaction in bilayer graphene. Phys. Rev. Lett. 102, 056807 (2009)

    Article  ADS  Google Scholar 

  3. S.V. Kusminskiy, D.K. Campbell, A.H. Castro Neto, Electron-electron interactions in graphene bilayers. Europhys. Lett. 85, 58005 (2009)

    Article  ADS  Google Scholar 

  4. K. Shizuya, Many-body corrections to cyclotron resonance in monolayer and bilayer graphene. Phys. Rev. B 81, 075407 (2010)

    Article  ADS  Google Scholar 

  5. M. Mucha-Kruczyński, E. McCann, V.I. Fal’ko, Influence of interlayer asymmetry on magneto-spectroscopy of bilayer graphene. Solid State Commun. 149, 1111 (2009)

    Article  ADS  Google Scholar 

  6. M. Mucha-Kruczyński, O. Kashuba, V.I. Fal’ko, Spectral features due to inter-Landau-level transitions in the Raman spectrum of bilayer graphene, Phys. Rev. B, 82, 045405 (2010)

    Google Scholar 

  7. G. Abstreiter, M. Cardona, A. Pinczuk, in Light Scattering by Free Carrier Excitations in Semiconductors, ed. by M. Cardona, G.Güntherodt. Light Scattering in Solids, vol IV (Springer, Heidelberg, 1984)

    Google Scholar 

  8. M.V. Klein, in Electronic Raman Scattering, ed. by M. Cardona. Light Scattering in Solids, vol I (Springer, Heidelberg, 1983)

    Google Scholar 

  9. P.A. Wolff, Thomson and Raman scattering by mobile electrons in crystals. Phys. Rev. Lett. 16, 225 (1966)

    Article  ADS  Google Scholar 

  10. R.E. Slusher, C.K.N. Patel, P.A. Fleury, Inelastic light scattering from Landau-level electrons in semiconductors. Phys. Rev. Lett. 18, 77 (1967)

    Article  ADS  Google Scholar 

  11. C.K.N. Patel, R.E. Slusher, Light scattering from electron plasmas in a magnetic field. Phys. Rev. Lett. 21, 1563 (1968)

    Article  ADS  Google Scholar 

  12. O. Kashuba, V.I. Fal’ko, Signature of electronic excitations in the Raman spectrum of graphene, Phys. Rev. B 80, 241404(R) (2009)

    Google Scholar 

  13. D.S.L. Abergel, V.I. Fal’ko, Optical and magneto-optical far-infrared properties of bilayer graphene. Phys. Rev. B 75, 155430 (2007)

    Article  ADS  Google Scholar 

  14. A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, A.K. Geim, Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401 (2006)

    Article  ADS  Google Scholar 

  15. A. Gupta, G. Chen, P. Joshi, S. Tadigadapa, P.C. Eklund, Raman scattering from high-frequency phonons in supported n-graphene layer films. Nano Lett. 6, 2667 (2006)

    Article  ADS  Google Scholar 

  16. D. Graf, F. Molitor, K. Ensslin, C. Stampfer, A. Jungen, C. Hierold, L. Wirtz, Spatially resolved Raman spectroscopy of single- and few-layer graphene. Nano Lett. 7, 238 (2007)

    Article  ADS  Google Scholar 

  17. L.M. Malard, J. Nilsson, D.C. Elias, J.C. Brant, F. Plentz, E.S. Alves, A.H. Castro Neto, M.A. Pimenta, Probing the electronic structure of bilayer graphene by Raman scattering, Phys. Rev. B 76, 201401(R) (2007)

    Google Scholar 

  18. J. Yan, E.A. Henriksen, P. Kim, A. Pinczuk, Observation of anomalous phonon softening in bilayer graphene. Phys. Rev. Lett. 101, 136804 (2008)

    Article  ADS  Google Scholar 

  19. L.M. Malard, D.C. Elias, E.S. Alves, M.A. Pimenta, Observation of distinct electron-phonon couplings in gated bilayer graphene. Phys. Rev. Lett. 101, 257401 (2008)

    Article  ADS  Google Scholar 

  20. A. Das, B. Chakraborty, S. Piscanec, S. Pisana, A.K. Sood, A.C. Ferrari, Phonon renormalization in doped bilayer graphene. Phys. Rev. B 79, 155417 (2009)

    Article  ADS  Google Scholar 

  21. Z. Ni, L. Liu, Y. Wang, Z. Zheng, L.-J. Li, T. Yu, Z. Shen, G-band Raman double resonance in twisted bilayer graphene: evidence of band splitting and folding. Phys. Rev. B 80, 125404 (2009)

    Article  ADS  Google Scholar 

  22. D.L. Mafra, L.M. Malard, S.K. Doorn, H. Htoon, J. Nilsson, A.H. Castro Neto, M.A. Pimenta, Observation of the Kohn anomaly near the K point of bilayer graphene, Phys. Rev. B 80, 241414(R) (2009)

    Google Scholar 

  23. M. Mucha-Kruczyński, D.S.L. Abergel, E. McCann, V.I. Fal’ko, On spectral properties of bilayer graphene: the effect of an SiC substrate and infrared magneto-spectroscopy. J. Phys. Condens. Matter 21, 344206 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcin Mucha-Kruczynski .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mucha-Kruczynski, M. (2013). Electronic Raman Spectroscopy. In: Theory of Bilayer Graphene Spectroscopy. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30936-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30936-6_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30935-9

  • Online ISBN: 978-3-642-30936-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics