Skip to main content

The Tight-Binding Approach and the Resulting Electronic Structure

  • Chapter
  • First Online:
Theory of Bilayer Graphene Spectroscopy

Part of the book series: Springer Theses ((Springer Theses))

  • 1406 Accesses

Abstract

In this chapter, we describe the crystal and reciprocal lattices of bilayer graphene. We also discuss briefly the symmetry of the crystal lattice. We then introduce the tight-binding model for \(\pi \) electrons in bilayer graphene. We start with a general formulation valid for all points in the Brillouin zone and the resulting electronic structure. Next, we concentrate on the linear approximation of that model around the corners of the Brillouin zone.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We neglect in Eq. (2.6a) a factor of \(3\gamma _{n}\) appearing on the diagonal as it only leads to a shift of zero on the energy scale.

  2. 2.

    For brevity, we omit the momentum index \(\varvec{p}\) and explicit dependence of the basis functions \(\phi _{\varvec{p},\xi ,i}\) on \(\varvec{r}\).

References

  1. P.R. Wallace, The band theory of graphite. Phys. Rev. 71, 622 (1947)

    Article  ADS  MATH  Google Scholar 

  2. J.W. McClure, Band structure of graphite and de Haas-van Alphen effect. Phys. Rev. 108, 612 (1957)

    Article  ADS  Google Scholar 

  3. J.C. Slonczewski, P.R. Weiss, Band structure of graphite. Phys. Rev. 109, 272 (1958)

    Article  ADS  Google Scholar 

  4. J.W. McClure, Theory of diamagnetism of graphite. Phys. Rev. 119, 606 (1960)

    Article  ADS  Google Scholar 

  5. R. Saito, G. Dresselhaus, M.S. Dresselhaus, Physical Properties of Carbon Nanotubes (Imperial College Press, London, 1998)

    Book  Google Scholar 

  6. C. Bena, G. Montambaux, Remarks on the tight-binding model of graphene. New J. Phys. 11, 095003 (2009)

    Article  ADS  Google Scholar 

  7. J.D. Bernal, The structure of graphite. Proc. R. Soc. A 106, 749 (1924)

    Article  ADS  Google Scholar 

  8. M.S. Dresselhaus, G. Dresselhaus, Intercalation compounds of graphite. Adv. Phys. 30, 139 (1981)

    Article  ADS  Google Scholar 

  9. F. Varchon, R. Feng, J. Hass, X. Li, B. Ngoc Nguyen, C. Naud, P. Mallet, J.-Y. Veuillen, C. Berger, E.H. Conrad, L. Magaud, Electronic structure of epitaxial graphene layers on SiC: effect of the substrate. Phys. Rev. Lett. 99, 126805 (2007)

    Article  ADS  Google Scholar 

  10. S.B. Trickey, F. Müller-Plathe, G.H.F. Diercksen, Interplanar binding and lattice relaxation in a graphite dilayer. Phys. Rev. B 45, 4460 (1992)

    Article  ADS  Google Scholar 

  11. H. Ajiki, T. Ando, Electronic states of carbon nanotubes. J. Phys. Soc. Jpn. 62, 1255 (1993)

    Article  ADS  Google Scholar 

  12. T. Ando, Theory of electronic states and transport in carbon nanotubes. J. Phys. Soc. Jpn. 74, 777 (2005)

    Article  ADS  MATH  Google Scholar 

  13. J.M. Luttinger, W. Kohn, Motion of electrons and holes in perturbed periodic fields. Phys. Rev. 97, 869 (1955)

    Article  ADS  MATH  Google Scholar 

  14. D.P. DiVincenzo, E.J. Mele, Self-consistent effective-mass theory for intralayer screening in graphite intercalation compounds. Phys. Rev. B 29, 1685 (1984)

    Article  ADS  Google Scholar 

  15. T. Ohta, A. Bostwick, T. Seyller, K. Horn, E. Rotenberg, Controlling the electronic structure of bilayer graphene. Science 313, 951 (2006)

    Article  ADS  Google Scholar 

  16. L.M. Zhang, Z.Q. Li, D.N. Basov, M.M. Fogler, Z. Hao, M.C. Martin, Determination of the electronic structure of bilayer graphene from infrared spectroscopy. Phys. Rev. B 78, 235408 (2008)

    Article  ADS  Google Scholar 

  17. A.B. Kuzmenko, E. van Heumen, D. van der Marel, P. Lerch, P. Blake, K.S. Novoselov, A.K. Geim, Infrared spectroscopy of electronic bands in bilayer graphene. Phys. Rev. B 79, 115441 (2009)

    Article  ADS  Google Scholar 

  18. A.B. Kuzmenko, I. Crassee, D. van der Marel, P. Blake, K.S. Novoselov, Determination of the gate-tunable band gap and tight-binding parameters in bilayer graphene using infrared spectroscopy. Phys. Rev. B 80, 165406 (2009)

    Article  ADS  Google Scholar 

  19. Z.Q. Li, E.A. Henriksen, Z. Jiang, Z. Hao, M.C. Martin, P. Kim, H.L. Stormer, D.N. Basov, Band structure asymmetry of bilayer graphene revealed by infrared spectroscopy. Phys. Rev. Lett. 102, 037403 (2009)

    Article  ADS  Google Scholar 

  20. L.M. Malard, J. Nilsson, D.C. Elias, J.C. Brant, F. Plentz, E.S. Alves, A.H. Castro Neto, M.A. Pimenta, Probing the electronic structure of bilayer graphene by Raman scattering. Phys. Rev. B 76, 201401(R) (2007)

    Google Scholar 

  21. J. Yan, E.A. Henriksen, P. Kim, A. Pinczuk, Observation of anomalous phonon softening in bilayer graphene. Phys. Rev. Lett. 101, 136804 (2008)

    Article  ADS  Google Scholar 

  22. A. Das, B. Chakraborty, S. Piscanec, S. Pisana, A.K. Sood, A.C. Ferrari, Phonon renormalization in doped bilayer graphene. Phys. Rev. B 79, 155417 (2009)

    Article  ADS  Google Scholar 

  23. D.L. Mafra, L.M. Malard, S.K. Doorn, H. Htoon, J. Nilsson, A.H. Castro Neto, M.A. Pimenta, Observation of the Kohn anomaly near the K point of bilayer graphene. Phys. Rev. B 80, 241414(R) (2009)

    Google Scholar 

  24. J.B. Oostinga, H.B. Heersche, X.L. Liu, A.F. Morpurgo, L.M.K. Vandersypen, Gate-induced insulating state in bilayer graphene devices. Nat. Mater. 7, 151 (2008)

    Article  ADS  Google Scholar 

  25. Y. Zhang, T.-T. Tang, C. Girit, Z. Hao, M.C. Martin, A. Zettl, M.F. Crommie, Y.R. Shen, F. Wang, Direct observation of a widely tunable bandgap in bilayer graphene. Nature 459, 820 (2009)

    Article  ADS  Google Scholar 

  26. K.F. Mak, C.H. Lui, J. Shan, T.F. Heinz, Observation of an electric-field-induced band gap in bilayer graphene by infrared spectroscopy. Phys. Rev. Lett. 102, 256405 (2009)

    Article  ADS  Google Scholar 

  27. M. Mucha-Kruczyński, E. McCann, V.I. Fal’ko, Electron-hole asymmetry and energy gaps in bilayer graphene. Semicond. Sci. Technol. 25, 033001 (2010)

    Article  ADS  Google Scholar 

  28. E. McCann, V.I. Fal’ko, Landau level degeneracy and quantum hall effect in a graphite bilayer. Phys. Rev. Lett. 96, 086805 (2006)

    Article  ADS  Google Scholar 

  29. D.S.L. Abergel, V.I. Fal’ko, Optical and magneto-optical far-infrared properties of bilayer graphene. Phys. Rev. B 75, 155430 (2007)

    Article  ADS  Google Scholar 

  30. M.I. Katsnelson, K.S. Novoselov, A.K. Geim, Chiral tunnelling and the Klein paradox in graphene. Nat. Phys. 2, 620 (2006)

    Article  Google Scholar 

  31. K. Kechedzhi, E. McCann, V. Fal’ko, B. Altshuler, Influence of trigonal warping on interference effects in bilayer graphene. Phys. Rev. Lett. 98, 176806 (2007)

    Article  ADS  Google Scholar 

  32. K.S. Novoselov, E. McCann, S.V. Morozov, V.I. Fal’ko, M.I. Katsnelson, U. Zeitler, D. Jiang, F. Schedin, A.K. Geim, Unconventional quantum Hall effect and Berry’s phase of 2pi in bilayer graphene. Nat. Phys. 2, 177 (2006)

    Article  Google Scholar 

  33. M.I. Katsnelson, Minimal conductivity in bilayer graphene. Eur. Phys. J. B 52, 151 (2006)

    Article  ADS  Google Scholar 

  34. E. McCann, D.S.L. Abergel, V.I. Fal’ko, Electrons in bilayer graphene. Solid State Commun. 143, 110 (2007)

    Article  ADS  Google Scholar 

  35. I. Lifshitz, Anomalies of electron characteristics of a metal in the high pressure region. Sov. Phys. J. Exp. Theor. Phys. 11, 1130 (1960)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcin Mucha-Kruczynski .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mucha-Kruczynski, M. (2013). The Tight-Binding Approach and the Resulting Electronic Structure. In: Theory of Bilayer Graphene Spectroscopy. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30936-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30936-6_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30935-9

  • Online ISBN: 978-3-642-30936-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics