Skip to main content

Theoretical Foundations of Femtosecond Filamentation

  • Chapter
  • First Online:
Nonlinear Optics in the Filamentation Regime

Part of the book series: Springer Theses ((Springer Theses))

  • 743 Accesses

Abstract

In the following chapter, the theoretical modeling of femtosecond filamentation is discussed. For a detailed understanding of this phenomenon, the dynamical equation governing the evolution of the laser electric field have to be identified.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Nonlocally responding media play a crucial role for the physics of negative refraction [15]. In these media, the susceptibility \(\chi ^{(1)}(\omega ,\vec {k})\) depends both on the frequency \(\omega \) and the wave vector \(\vec {k}\). The non-local analogue to Eq. (2.7) therefore involves a convolution in the spatial domain.

  2. 2.

    As in the case of the linear polarization, spatial dispersion modeled by a wave-vector dependent nonlinear susceptibility \(\chi ^{(n)}(\omega _1,\cdots ,\omega _n,\vec {k}_1,\cdots ,\vec {k}_n)\) was disregarded. Spatially dispersive nonlinearities involve a nonlocal optical response and can arise from thermal effects or may occur in dipolar Bose-Einstein condensates [21].

References

  1. J.C. Maxwell, On physical lines of force. Philos Mag. 21, 161(1861)

    Google Scholar 

  2. A. Ferrando, M. ZacarĂ©s, P. FernĂ¡ndez de CĂ³rdoba, D. Binosi, A. Montero, Forward-backward equations for nonlinear propagation in axially invariant optical systems. Phys. Rev. E 71, 016601 (2005)

    Article  ADS  Google Scholar 

  3. P. Kinsler, Optical pulse propagation with minimal approximations. Phys. Rev. A 81, 013819 (2010)

    Article  ADS  Google Scholar 

  4. A.V. Husakou, J. Herrmann, Supercontinuum Generation of Higher-Order Solitons by Fission in Photonic Crystal Fibers. Phys. Rev. Lett. 87, 203901 (2001)

    Article  ADS  Google Scholar 

  5. V.E. Zakharov, A.B. Shabat, Exact theory of twodimensional selffocusing and one-dimensional self-modulation of waves in nonlinear media. Sov. Phys. JETP 101, 62 (1972)

    MathSciNet  ADS  Google Scholar 

  6. T. Brabec, F. Krausz, Nonlinear optical pulse propagation in the single-cycle regime. Phys. Rev. Lett. 78, 3282 (1997)

    Article  ADS  Google Scholar 

  7. S. Skupin, G. Stibenz, L. Berge, F. Lederer, T. Sokollik, M. SchnĂ¼rer, N. Zhavoronkov, G. Steinmeyer, Self-compression by femtosecond pulse filamentation: Experiments versus numerical simulations. Phys. Rev. E 74, 056604 (2006)

    Article  ADS  Google Scholar 

  8. L. Berge, S. Skupin, R. Nuter, J. Kasparian, J.P. Wolf, Ultrashort filaments of light in weakly ionized, optically transparent media. Rep. Prog. Phys. 70, 1633 (2007)

    Article  ADS  Google Scholar 

  9. S. Augst, D. Strickland, D.D. Meyerhofer, S.L. Chin, J. Eberly, Tunneling ionization of noble gases in a high-intensity laser field. Phys. Rev. Lett. 63, 2212 (1989)

    Article  ADS  Google Scholar 

  10. V.S. Popov, Tunnel and multiphoton ionization of atoms and ions in a strong laser field. Phys. Usp. 47, 855 (2004)

    Article  ADS  Google Scholar 

  11. A. Braun, G. Korn, X. Liu, D. Du, J. Squier, G. Mourou, Self-channeling of high-peak-power femtosecond laser pulses in air. Opt. Lett. 20, 73 (1995)

    Article  ADS  Google Scholar 

  12. A. Couairon, A. Mysyrowicz, Femtosecond filamentation in transparent media. Phys. Rep. 441, 47 (2007)

    Article  ADS  Google Scholar 

  13. S.L. Chin, Y. Chen, O. Kosareva, V.P. Kandidov, F. Théberge, What is a filament? Laser Phys. 18, 962 (2008)

    Article  ADS  Google Scholar 

  14. L.D. Landau, E.M. Lifschitz. Lehrbuch der Theoretischen Physik, Bd. 8, Elektrodynamik der Kontinua, (Harri Deutsch, Berlin, 1991)

    Google Scholar 

  15. V.M. Agranovich, Y.N. Gartstein, Spatial dispersion and negative refraction of light. Phys. Usp 49, 1029 (2006)

    Article  ADS  Google Scholar 

  16. G. Fibich, B. Ilan, Deterministic vectorial effects lead to multiple filamentation. Opt. Lett. 26, 840 (2001)

    Article  ADS  Google Scholar 

  17. M. Kolesik, J.V. Moloney, M. Mlejnek, Unidirectional optical pulse propagation equation. Phys. Rev. Lett. 89, 283902 (2002)

    Article  ADS  Google Scholar 

  18. S. Amiranashvili, A.G. Vladimirov, U. Bandelow, A model equation for ultrashort optical pulses. Eur. Phys. J. D 58, 219 (2010)

    Article  ADS  Google Scholar 

  19. S. Amiranashvili, A. Demircan, Hamiltonian structure of propagation equations for ultrashort optical pulses. Phys. Rev. A 82, 013812 (2010)

    Article  ADS  Google Scholar 

  20. R.W. Boyd, Nonlinear Optics, (Academic Press, Orlando, 2008)

    Google Scholar 

  21. S. Skupin, O. Bang, D. Edmundson, W. Krolikowski, Stability of two-dimensional spatial solitons in nonlocal nonlinear media. Phys. Rev. E 73, 066603 (2006)

    Article  ADS  Google Scholar 

  22. D.C. Hutchings, M. Sheik-Bahae, D.J. Hagan, E.W. van Stryland, Kramers-Kronig relations in nonlinear optics. Opt. Quant. Electron. 24, 1 (1992)

    Article  Google Scholar 

  23. W.R.J.C. Diels, Ultrashort Laser Pulse Phenomena: Fundamentals, Techniques, and Applications on a Femtosecond Time Scale, (Academic Press, Burlington, 2006)

    Google Scholar 

  24. C. Brée, A. Demircan, G. Steinmeyer, Method for computing the nonlinear refractive index via Keldysh theory. IEEE J. Quantum Electron. 4, 433 (2010)

    Article  ADS  Google Scholar 

  25. P.P. Ho, R.R. Alfano, Optical Kerr effect in liquids. Phys. Rev. A 20, 2170 (1979)

    Article  ADS  Google Scholar 

  26. M. Melnichuk, L.T. Wood, Direct Kerr electro-optic effect in noncentrosymmetric materials. Phys. Rev. A 82, 013821 (2010)

    Article  ADS  Google Scholar 

  27. P. Bejot, J. Kasparian, S. Henin, V. Loriot, T. Vieillard, E. Hertz, O. Faucher, B. Lavorel, J.-P. Wolf, Higher-order Kerr terms allow ionization-free filamentation in gases. Phys. Rev. Lett. 104, 103903 (2010)

    Article  ADS  Google Scholar 

  28. V. Loriot, E. Hertz, O. Faucher, B. Lavorel, Measurement of high order Kerr refractive index of major air components: erratum. Opt. Express 18, 3011 (2010)

    Article  ADS  Google Scholar 

  29. V. Loriot, E. Hertz, O. Faucher, B. Lavorel, Measurement of high order Kerr refractive index of major air components. Opt. Express 17, 13429 (2009)

    Article  ADS  Google Scholar 

  30. P. Drude, Zur Elektronentheorie der Metalle. Annalen der Physik, 306, 566 (1900). ISSN 1521–3889

    Google Scholar 

  31. P. Drude, Zur Elektronentheorie der Metalle; II. Teil. Galvanomagnetische und thermomagnetische Effecte. Annalen der Physik, 308, 369 (1900). ISSN 1521–3889

    Google Scholar 

  32. A.M. Perelomov, V.S. Popov, M.V. Terent’ev, Ionization of atoms in an alternating electric field. Sov. Phys. JETP 23, 924 (1966)

    ADS  Google Scholar 

  33. M.V. Ammosov, N.B. Delone, V.P. Krainov, Tunnel ionization of complex atoms and of atomic ions in an alternating electromagnetic field. Sov. Phys. JETP 64, 1191 (1986)

    Google Scholar 

  34. L.V. Keldysh, Ionization in the field of a strong electromagnetic wave. Sov. Phys. JETP 20, 1307 (1965)

    MathSciNet  Google Scholar 

  35. S.V. Poprzuhenko, V.D. Mur, V.S. Popov, D. Bauer, Strong field ionization rate for arbitrary laser frequencies. Phys. Rev. Lett. 101, 193003 (2008)

    Article  ADS  Google Scholar 

  36. Y.V. Vanne, A. Saenz, Exact Keldysh theory of strong-field ionization: residue method versus saddle-point approximation. Phys. Rev. A 75, 033403 (2007)

    Article  ADS  Google Scholar 

  37. I. Koprinkov, Ionization variation of the group velocity dispersion by high-intensity optical pulses. Appl. Phys. B 79, 359 (2004). ISSN 0946–2171. 10.1007/s00340-004-1553-z

  38. Y.H. Chen, S. Varma, T.M. Antonsen, H.M. Milchberg, Direct measurement of the electron density of extended femtosecond laser pulse-induced filaments. Phys. Rev. Lett. 105, 215005 (2010)

    Article  ADS  Google Scholar 

  39. J. Kasparian, P. BĂ©jot, J.-P. Wolf, Arbitrary-order nonlinear contribution to self-steepening. Opt. Lett. 35, 2795 (2010)

    Article  Google Scholar 

  40. W. Ettoumi, P. BĂ©jot, Y. Petit, V. Loriot, E. Hertz, O. Faucher, B. Lavorel, J. Kasparian, J.-P. Wolf, Spectral dependence of purely-Kerr-driven filamentation in air and argon. Phys. Rev. A 82, 033826 (2010)

    Article  ADS  Google Scholar 

  41. G.P. Agrawal, Nonlinear Fiber Optics, 3rd edn. (Academic Press, London, 2001)

    Google Scholar 

  42. A. Dalgarno, A.E. Kingston, The refractive indices and Verdet constants of the intert gases. Proc. Roy. Soc. A 259, 424 (1960)

    Article  ADS  Google Scholar 

  43. S. Amiranashvili, U. Bandelow, A. Mielke, Padé approximant for refractive index and nonlocal envelope equations. Opt. Commun. 283, 480 (2010)

    Article  ADS  Google Scholar 

  44. L. Bergé, S. Skupin, Few-cycle light bullets created by femtosecond filaments. Phys. Rev. Lett. 100, 113902 (2008)

    Article  ADS  Google Scholar 

  45. G. Stibenz, N. Zhavoronkov, G. Steinmeyer, Self-compression of milijoule pulses to 7.8 fs duration in a white-light filament. Opt. Lett. 31, 274 (2006)

    Article  ADS  Google Scholar 

  46. J.-F. Daigle, O. Kosareva, N. Panov, M. Bégin, F. Lessard, C. Marceau, Y. Kamali, G. Roy, V. Kandidov, S.L. Chin, A simple method to significantly increase filaments’ length and ionization density. Appl. Phys. B 94, 249 (2009)

    Article  ADS  Google Scholar 

  47. R.R. Alfano, S.L. Shapiro, Observation of self-phase modulation and small-scale filaments in crystals and glasses. Phys. Rev. Lett. 24, 592 (1970)

    Article  ADS  Google Scholar 

  48. F. DeMartini, C.H. Townes, T.K. Gustafson, P.L. Kelley, Self-steepening of light pulses. Phys. Rev. 164, 312 (1967)

    Article  ADS  Google Scholar 

  49. G.A. Askar’yan, Effects of the gradient of strong electromagnetic beam on electrons and atoms. Sov. Phys. JETP 15, 1088 (1962)

    Google Scholar 

  50. L. Bergé, Wave collapse in physics: principles and applications to light and plasma waves. Phys. Rep. 303, 259 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  51. C. Sulem, P.-L. Sulem, The Nonlinear Schrödinger Equation: Self-Focusing and Wave Collapse, Applied Mathematical Sciences(Springer-Verlag, New York, 1999)

    Google Scholar 

  52. R.Y. Chiao, E. Garmire, C.H. Townes, Self-trapping of optical beams. Phys. Rev. Lett. 13, 479 (1964)

    Article  ADS  Google Scholar 

  53. M.I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates. Commun. Math. Phys. 87, 567 (1983)

    Article  ADS  MATH  Google Scholar 

  54. J.J. Rasmussen, K. Rypdal, Blow-up in nonlinear Schrödinger equations-I: a general review. Phys. Scr. 33, 481 (1986)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  55. K. Rypdal, J.J. Rasmussen, Stability of solitary structures in the nonlinear Schrödinger equation. Phys. Scr. 40, 192 (1989)

    Article  ADS  Google Scholar 

  56. J. Marburger, Self-focusing: theory, Prog. Quant. Electron. 4, 35 (1975). ISSN 0079–6727

    Google Scholar 

  57. G. Fibich, Small beam nonparaxiality arrests self-focusing of optical beams. Phys. Rev. Lett. 76, 4356 (1996)

    Article  ADS  Google Scholar 

  58. V.I. Bespalov, V.I. Talanov, Filamentary structure of light beams in nonlinear liquids. J. Exp. Theor. Phys. 11, 471 (1966)

    Google Scholar 

  59. D. Faccio, M.A. Porras, A. Dubietis, F. Bragheri, A. Couairon, P.D. Trapani, Conical emission, pulse splitting, and x-wave parametric amplification in nonlinear dynamics of ultrashort light pulses. Phys. Rev. Lett. 96, 193901 (2006)

    Article  ADS  Google Scholar 

  60. L. Bergé, J.J. Rasmussen, Multisplitting and collapse of self-focusing anisotropic beams in normal/anomalous dispersive media. Phys. Plasmas 3, 824 (1996)

    Article  ADS  Google Scholar 

  61. M.A. Porras, A. Parola, D. Faccio, A. Couairon, P.D. Trapani. Light-filament dynamics and the spatiotemporal instability of the Townes profile. Phys. Rev. A 76, 011803(R) (2007)

    Google Scholar 

  62. J.E. Rothenberg, Space-time focusing: breakdown of the slowly varying envelope approximation in the self-focusing of femtosecond pulses. Opt. Lett. 17, 1340 (1992)

    Article  ADS  Google Scholar 

  63. A. Becker, N. Aközbek, K. Vijayalakshmi, E. Oral, C. Bowden, S. Chin. Intensity clamping and re-focusing of intense femtosecond laser pulses in nitrogen molecular gas. Appl. Phys. B 73, 287 (2001). ISSN 0946–2171. 10.1007/s003400100637

  64. M. Mlejnek, E.M. Wright, J.V. Moloney, Dynamic spatial replenishment of femtosecond pulses propagating in air. Opt. Lett. 23, 382 (1998)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carsten Brée .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Brée, C. (2012). Theoretical Foundations of Femtosecond Filamentation. In: Nonlinear Optics in the Filamentation Regime. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30930-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30930-4_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30929-8

  • Online ISBN: 978-3-642-30930-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics