Skip to main content

Introduction

  • Chapter
  • First Online:
Nonlinear Optics in the Filamentation Regime

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Femtosecond filaments are narrow self-confined beams of laser light maintaining their beam diameters over distances widely exceeding the classical Rayleigh range of a laser beam. Such a self-organized, filamentary structure of light and free electric charges emerges when pulsed femtosecond laser radiation is focused into a gas cell.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Braun, G. Korn, X. Liu, D. Du, J. Squier, G. Mourou, Self-channeling of high-peak-power femtosecond laser pulses in air. Opt. Lett. 20, 73 (1995)

    Article  ADS  Google Scholar 

  2. S.L. Chin, Y. Chen, O. Kosareva, V.P. Kandidov, F. Théberge, What is a filament? Laser Phys. 18, 962 (2008)

    Article  ADS  Google Scholar 

  3. M. Born, E. Wolf, Principles of Optics (Cambridge University Press, Cambridge, 1999)

    Google Scholar 

  4. L. Berge, S. Skupin, R. Nuter, J. Kasparian, J.P. Wolf, Ultrashort filaments of light in weakly ionized, optically transparent media. Rep. Prog. Phys. 70, 1633 (2007)

    Article  ADS  Google Scholar 

  5. A. Couairon, A. Mysyrowicz, Femtosecond filamentation in transparent media. Phys. Rep. 441, 47 (2007)

    Article  ADS  Google Scholar 

  6. N.F. Pilipetskii, A.R. Rustamov, Observation of selffocusing of light in liquids. JETP Lett. 2, 88 (1965)

    Google Scholar 

  7. D. Strickland, G. Mourou, Compression of amplified chirped optical pulses. Opt. Commun. 56, 219 (1985). ISSN 0030–4018

    Google Scholar 

  8. R.R. Alfano, S.L. Shapiro, Observation of self-phase modulation and small-scale filaments in crystals and glasses. Phys. Rev. Lett. 24, 592 (1970)

    Article  ADS  Google Scholar 

  9. H. Wille, M. Rodriguez, J. Kasparian, D. Mondelain, J. Yu, A. Mysyrowicz, R. Sauerbrey, J.P. Wolf, L. Wöste, Teramobile: a mobile femtosecond-terawatt laser and detection system. Eur. Phys. J. Appl. Phys. 20, 183 (2002)

    Article  ADS  Google Scholar 

  10. K. Stelmaszczyk, P. Rohwetter, G. Mejean, J. Yu, E. Salmon, J. Kasparian, R. Ackermann, J.P. Wolf, L. Wöste, Long-distance remote laser-induced breakdown spectroscopy using filamentation in air. Appl. Phys. Lett. 85, 3977 (2004)

    Article  ADS  Google Scholar 

  11. S. Tzortzakis, D. Anglos, D. Gray, Ultraviolet laser filaments for remote laser-induced breakdown spectroscopy (LIBS) analysis: applications in cultural heritage monitoring. Opt. Lett. 31, 1139 (2006)

    Article  ADS  Google Scholar 

  12. I. Babushkin, W. Kuehn, C. Köhler, S. Skupin, L. Bergé, K. Reimann, M. Woerner, J. Herrmann, T. Elsässer, Ultrafast spatiotemporal dynamics of terahertz generation by ionizing two-color femtosecond pulses in gases. Phys. Rev. Lett. 105, 053903 (2010)

    Article  ADS  Google Scholar 

  13. A. Houard, C. D’Amico, Y. Liu, Y.B. Andre, M. Franco, B. Prade, A. Mysyrowicz, E. Salmon, P. Pierlot, L.-M. Cleon, High current permanent discharges in air induced by femtosecond laser filamentation. Appl. Phys. Lett. 90, 171501 (2007)

    Article  ADS  Google Scholar 

  14. M. Mlejnek, E.M. Wright, J.V. Moloney, Dynamic spatial replenishment of femtosecond pulses propagating in air. Opt. Lett. 23, 382 (1998)

    Article  ADS  Google Scholar 

  15. Y. Silberberg, Collapse of optical pulses. Opt. Lett. 15, 1282 (1990)

    Article  ADS  Google Scholar 

  16. S. Skupin, G. Stibenz, L. Berge, F. Lederer, T. Sokollik, M. SchnĂ¼rer, N. Zhavoronkov, G. Steinmeyer, Self-compression by femtosecond pulse filamentation: experiments versus numerical simulations. Phys. Rev. E 74, 056604 (2006)

    Article  ADS  Google Scholar 

  17. C. Brée, A. Demircan, S. Skupin, L. Bergé, G. Steinmeyer, Self-pinching of pulsed laser beams during filamentary propagation. Opt. Express 17, 16429 (2009)

    Article  ADS  Google Scholar 

  18. C. Brée, A. Demircan, S. Skupin, L. Bergé, G. Steinmeyer, Plasma induced pulse breaking in filamentary self compression. Laser Phys. 20, 1107 (2010)

    Article  ADS  Google Scholar 

  19. C. Brée, J. Bethge, S. Skupin, L. Bergé, A. Demircan, G. Steinmeyer, Cascaded self-compression of femtosecond pulses in filaments. New J. Phys. 12, 093046 (2010)

    Article  ADS  Google Scholar 

  20. L. Berge, S. Skupin, G. Steinmeyer, Temporal self-restoration of compressed optical filaments. Phys. Rev. Lett. 101, 213901 (2008)

    Article  ADS  Google Scholar 

  21. L. Bergé, S. Skupin, G. Steinmeyer, Self-recompression of laser filaments exiting a gas cell. Phys. Rev. A 79, 033838 (2009). doi:10.1103/PhysRevA.83.043803

    Article  ADS  Google Scholar 

  22. C. Brée, A. Demircan, J. Bethge, E.T.J. Nibbering, S. Skupin, L. Bergé, G. Steinmeyer, Filamentary pulse self-compression: the impact of the cell windows. Phys. Rev. A 83, 043803 (2011). doi:10.1103/PhysRevA.83.043803

    Article  ADS  Google Scholar 

  23. I.G. Koprinkov, A. Suda, P. Wang, K. Midorikawa, Self-compression of high-intensity femtosecond optical pulses and spatiotemporal soliton generation. Phys. Rev. Lett. 84, 3847 (2000)

    Article  ADS  Google Scholar 

  24. V. Loriot, E. Hertz, O. Faucher, B. Lavorel, Measurement of high order Kerr refractive index of major air components. Opt. Express 17, 13429 (2009)

    Article  ADS  Google Scholar 

  25. V. Loriot, E. Hertz, O. Faucher, B. Lavorel, Measurement of high order Kerr refractive index of major air components: erratum. Opt. Express 18, 3011 (2010)

    Article  ADS  Google Scholar 

  26. A. Teleki, E.M. Wright, M. Kolesik, Microscopic model for the higher-order nonlinearity in optical filaments. Phys. Rev. A 82, 065801 (2010)

    Article  ADS  Google Scholar 

  27. M. Kolesik, E.M. Wright, J.V. Moloney, Femtosecond filamentation and higher-order nonlinearities. Opt. Lett. 35, 2550 (2010)

    Article  ADS  Google Scholar 

  28. M. Kolesik, D. Mirell, J.-C. Diels, J.V. Moloney, On the higher-order Kerr effect in femtosecond filaments. Opt. Lett. 35, 3685 (2010)

    Article  ADS  Google Scholar 

  29. Y.H. Chen, S. Varma, T.M. Antonsen, H.M. Milchberg, Direct measurement of the electron density of extended femtosecond laser pulse-induced filaments. Phys. Rev. Lett. 105, 215005 (2010)

    Article  ADS  Google Scholar 

  30. W. Ettoumi, P. BĂ©jot, Y. Petit, V. Loriot, E. Hertz, O. Faucher, B. Lavorel, J. Kasparian, J.-P. Wolf, Spectral dependence of purely-Kerr-driven filamentation in air and argon. Phys. Rev. A 82, 033826 (2010)

    Article  ADS  Google Scholar 

  31. P. Bejot, J. Kasparian, S. Henin, V. Loriot, T. Vieillard, E. Hertz, O. Faucher, B. Lavorel, J.-P. Wolf, Higher-order Kerr terms allow ionization-free filamentation in gases. Phys. Rev. Lett. 104, 103903 (2010)

    Article  ADS  Google Scholar 

  32. J. Kasparian, P. BĂ©jot, J.-P. Wolf, Arbitrary-order nonlinear contribution to self-steepening. Opt. Lett. 35, 2795 (2010)

    Article  Google Scholar 

  33. C. Brée, A. Demircan, G. Steinmeyer, Saturation of the all-optical Kerr effect. Phys. Rev. Lett. 106, 183902 (2011). doi:10.1103/PhysRevLett.106.183902

    Google Scholar 

  34. M. Sheik-Bahae, D.J. Hagan, E.W. van Stryland, Dispersion and band-gap scaling of the electronic Kerr effect in solids associated with two-photon absorption. Phys. Rev. Lett. 65, 96 (1990)

    Article  ADS  Google Scholar 

  35. M. Sheik-Bahae, D.C. Hutchings, D.J. Hagan, E.W. van Stryland, Dispersion of bound electronic nonlinear refraction in solids. IEEE J. Quantum Electron. 27, 1296 (1991)

    Article  ADS  Google Scholar 

  36. C. Brée, A. Demircan, G. Steinmeyer, Method for computing the nonlinear refractive index via Keldysh theory. IEEE J. Quantum Electron. 4, 433 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carsten Brée .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Brée, C. (2012). Introduction. In: Nonlinear Optics in the Filamentation Regime. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30930-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30930-4_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30929-8

  • Online ISBN: 978-3-642-30930-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics