Skip to main content

Converse PUF-Based Authentication

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 7344))

Abstract

Physically Unclonable Functions (PUFs) are key tools in the construction of lightweight authentication and key exchange protocols. So far, all existing PUF-based authentication protocols follow the same paradigm: A resource-constrained prover, holding a PUF, wants to authenticate to a resource-rich verifier, who has access to a database of pre-measured PUF challenge-response pairs (CRPs). In this paper we consider application scenarios where all previous PUF-based authentication schemes fail to work: The verifier is resource-constrained (and holds a PUF), while the prover is resource-rich (and holds a CRP-database). We construct the first and efficient PUF-based authentication protocol for this setting, which we call converse PUF-based authentication. We provide an extensive security analysis against passive adversaries, show that a minor modification also allows for authenticated key exchange and propose a concrete instantiation using controlled Arbiter PUFs.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Armknecht, F., Maes, R., Sadeghi, A.-R., Sunar, B., Tuyls, P.: Memory Leakage-Resilient Encryption Based on Physically Unclonable Functions. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 685–702. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  2. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing efficient protocols. In: ACM CCS 1993, pp. 62–73. ACM (1993)

    Google Scholar 

  3. Bösch, C., Guajardo, J., Sadeghi, A.-R., Shokrollahi, J., Tuyls, P.: Efficient Helper Data Key Extractor on FPGAs. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 181–197. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  4. Bringer, J., Chabanne, H., Icart, T.: On Physical Obfuscation of Cryptographic Algorithms. In: Roy, B., Sendrier, N. (eds.) INDOCRYPT 2009. LNCS, vol. 5922, pp. 88–103. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  5. Das, A., Kocabaş, Ü., Sadeghi, A.-R., Verbauwhede, I.: PUF-based Secure Test Wrapper Design for Cryptographic SoC Testing. In: Design, Automation and Test in Europe (DATE). IEEE (2012)

    Google Scholar 

  6. Dodis, Y., Reyzin, L., Smith, A.: Fuzzy Extractors: How to Generate Strong Keys from Biometrics and Other Noisy Data. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 523–540. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  7. Eichhorn, I., Koeberl, P., van der Leest, V.: Logically reconfigurable PUFs: Memory-based secure key storage. In: ACM Workshop on Scalable Trusted Computing (ACM STC), pp. 59–64. ACM, New York (2011)

    Google Scholar 

  8. Gassend, B.: Physical Random Functions. Master’s thesis, MIT, MA, USA (January 2003)

    Google Scholar 

  9. Gassend, B., Clarke, D., van Dijk, M., Devadas, S.: Controlled physical random functions. In: Computer Security Applications Conference (ACSAC), pp. 149–160. IEEE (2002)

    Google Scholar 

  10. Gassend, B., Clarke, D., van Dijk, M., Devadas, S.: Controlled physical random functions. In: Computer Security Applications Conference (ACSAC), pp. 149–160. IEEE (2002)

    Google Scholar 

  11. Gassend, B., Clarke, D., van Dijk, M., Devadas, S.: Silicon physical random functions. In: Proceedings of the 9th ACM Conference on Computer and Communications Security (CCS 2002), pp. 148–160. ACM (2002)

    Google Scholar 

  12. Gassend, B., Clarke, D., van Dijk, M., Devadas, S.: Silicon physical random functions. In: ACM Conference on Computer and Communications Security (ACM CCS), pp. 148–160. ACM, New York (2002)

    Google Scholar 

  13. Guajardo, J., Kumar, S.S., Schrijen, G.-J., Tuyls, P.: FPGA Intrinsic PUFs and Their Use for IP Protection. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 63–80. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  14. Guajardo, J., Kumar, S.S., Schrijen, G.-J., Tuyls, P.: Brand and IP protection with physical unclonable functions. In: IEEE International Symposium on Circuits and Systems (ISCAS) 2008, pp. 3186–3189. IEEE ( May 2008)

    Google Scholar 

  15. Holcomb, D.E., Burleson, W.P., Fu, K.: Initial SRAM state as a fingerprint and source of true random numbers for RFID tags. In: Conference on RFID Security 2007, Malaga, Spain, July 11-13 (2007)

    Google Scholar 

  16. Kumar, S.S., Guajardo, J., Maes, R., Schrijen, G.-J., Tuyls, P.: Extended abstract: The butterfly PUF protecting IP on every FPGA. In: Workshop on Hardware-Oriented Security (HOST), pp. 67–70. IEEE (June 2008)

    Google Scholar 

  17. Lee, J.W., Lim, D., Gassend, B., Suh, E.G., van Dijk, M., Devadas, S.: A technique to build a secret key in integrated circuits for identification and authentication applications. In: Symposium on VLSI Circuits, pp. 176–179. IEEE (June 2004)

    Google Scholar 

  18. Lim, D., Lee, J.W., Gassend, B., Suh, E.G., van Dijk, M., Devadas, S.: Extracting secret keys from integrated circuits. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 13(10), 1200–1205 (2005)

    Article  Google Scholar 

  19. Lin, L., Holcomb, D., Krishnappa, D.K., Shabadi, P., Burleson, W.: Low-power sub-threshold design of secure physical unclonable functions. In: International Symposium on Low-Power Electronics and Design (ISLPED), pp. 43–48. IEEE (August 2010)

    Google Scholar 

  20. Maes, R., Tuyls, P., Verbauwhede, I.: Intrinsic PUFs from flip-flops on reconfigurable devices (November 2008)

    Google Scholar 

  21. Maes, R., Verbauwhede, I.: Physically unclonable functions: A study on the state of the art and future research directions. In: Towards Hardware-Intrinsic Security (2010)

    Google Scholar 

  22. Maiti, A., Casarona, J., McHale, L., Schaumont, P.: A large scale characterization of RO-PUF. In: International Symposium on Hardware-Oriented Security and Trust (HOST), pp. 94–99. IEEE (June 2010)

    Google Scholar 

  23. Öztürk, E., Hammouri, G., Sunar, B.: Towards robust low cost authentication for pervasive devices. In: International Conference on Pervasive Computing and Communications (PerCom), pp. 170–178. IEEE, Washington, DC (2008)

    Google Scholar 

  24. Ranasinghe, D.C., Engels, D.W., Cole, P.H.: Security and privacy: Modest proposals for Low-Cost RFID systems. In: Auto-ID Labs Research Workshop (September 2004)

    Google Scholar 

  25. Rührmair, U., Sehnke, F., Sölter, J., Dror, G., Devadas, S., Schmidhuber, J.: Modeling attacks on physical unclonable functions. In: ACM Conference on Computer and Communications Security (ACM CCS), pp. 237–249. ACM, New York (2010)

    Google Scholar 

  26. Sadeghi, A.-R., Visconti, I., Wachsmann, C.: Enhancing RFID security and privacy by physically unclonable functions. In: Towards Hardware-Intrinsic Security. Information Security and Cryptography, pp. 281–305. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  27. Schulz, S., Sadeghi, A.-R., Wachsmann, C.: Short paper: Lightweight remote attestation using physical functions. In: Proceedings of the Fourth ACM Conference on Wireless Network Security (ACM WiSec), pp. 109–114. ACM, New York (2011)

    Chapter  Google Scholar 

  28. Su, Y., Holleman, J., Otis, B.P.: A digital 1.6 pJ/bit chip identification circuit using process variations. IEEE Journal of Solid-State Circuits 43(1), 69–77 (2008)

    Article  Google Scholar 

  29. Suh, E.G., Devadas, S.: Physical unclonable functions for device authentication and secret key generation. In: ACM/IEEE Design Automation Conference (DAC), pp. 9–14. IEEE (June 2007)

    Google Scholar 

  30. Tuyls, P., Batina, L.: RFID-Tags for Anti-counterfeiting. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 115–131. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  31. Tuyls, P., Schrijen, G.-J., Škorić, B., van Geloven, J., Verhaegh, N., Wolters, R.: Read-Proof Hardware from Protective Coatings. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 369–383. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  32. van der Leest, V., Schrijen, G.-J., Handschuh, H., Tuyls, P.: Hardware intrinsic security from D flip-flops. In: ACM Workshop on Scalable Trusted Computing (ACM STC), pp. 53–62. ACM, New York (2010)

    Chapter  Google Scholar 

  33. Škorić, B., Tuyls, P., Ophey, W.: Robust Key Extraction from Physical Uncloneable Functions. In: Ioannidis, J., Keromytis, A.D., Yung, M. (eds.) ACNS 2005. LNCS, vol. 3531, pp. 407–422. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kocabaş, Ü., Peter, A., Katzenbeisser, S., Sadeghi, AR. (2012). Converse PUF-Based Authentication. In: Katzenbeisser, S., Weippl, E., Camp, L.J., Volkamer, M., Reiter, M., Zhang, X. (eds) Trust and Trustworthy Computing. Trust 2012. Lecture Notes in Computer Science, vol 7344. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30921-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30921-2_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30920-5

  • Online ISBN: 978-3-642-30921-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics