Skip to main content

Machines and Handling

  • Chapter
  • First Online:
Micro Metal Forming

Part of the book series: Lecture Notes in Production Engineering ((LNPE))

  • 2260 Accesses

Abstract

Most micro metal forming processes need a linear, mechanical movement in order to initiate and conduct the forming process. This applies especially to most bulk metal forming processes, such as upsetting and cold forging, described in Chap. 4, and to sheet metal forming processes, such as deep drawing, stretch drawing, bending, flange forming, piercing and blanking, described in Chap. 5. Nevertheless, there are some processes with rotational movement, such as rotary swaging, or other incremental forming processes. Furthermore, there are micro forming processes, which do not need any external mechanical movement at all. They obtain the forming energy, for example, by laser induced shock waves, such as in laser shock forming.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

a:

Distance (mm)

v:

Velocity (mm/s)

dS :

Ball diameter (mm)

dw :

Wire diameter (mm)

F:

Force (N)

p:

Pressure (psi)

U:

Electrical potential (V)

T:

Temperature (°C)

References

  1. Alting, L., Kimura, F., Hansen, H.N., Bissacco, G.: Micro engineering. CIRP Ann. Manufact. Technol. 52(2), 635–657 (2003)

    Article  Google Scholar 

  2. Ansel, Y., Schmitz, F., Kunz, S., Gruber, H.P., Popovic, G.: Development of tools for handling and assembling microcomponents. J. Micromech. Microeng. 12, 430–437 (2002)

    Article  Google Scholar 

  3. Boeck De, L., Vandaele, N.: Coordination and synchronization of material flows in supply chains—An analytical approach. Int. J. Prod. Econ. 116(2), 199–207 (2008)

    Article  Google Scholar 

  4. van Brussel, H., Peirs, J., Reynaerts, D., Delchambre, A., Reinhart, G., Roth, N., Weck, M., Zussmann, E.: Assembly of microsystems. CIRP Ann. Manufact. Technol. 49(2), 451–472 (2000)

    Article  Google Scholar 

  5. Burisch, A., Raatz, A., Hesselbach, J.: Strategies and devices for a modular desktop factory. In: International Precision Assembly Seminar (IPAS 2008), Boston, pp. 337–344 (2008)

    Google Scholar 

  6. Burisch, A., Raatz, A.: Challenges of miniaturized robots and machine elements for desktop factory applications. In: 7th International Workshop on Microfactories (IWMF 2010), Daejeon, pp. 100–105 (2011)

    Google Scholar 

  7. Claverley, J.D., Sheu, D.-Y., Burisch, A., Leach, R.K., Raatz, A.: Assembly of a novel MEMS-based 3D vibrating micro-scale co-ordinate measuring machine probe using desktop factory automation. In: International Symposium on Assembly and Manufacturing (ISAM 2011), Tampere (2011)

    Google Scholar 

  8. Ellwood, J., Burisch, A., Schöttler, K., Pokar, G., Raatz, A., Hesselbach, J.: Size-adapted manipulation robots for microassembly. In: Büttgenbach, S., Burisch, A., Hesselbach, J (eds.) Manufacturing of Active Microsystems, Microtechnology and MEMS Series, Springer, pp. 269–286 (2011)

    Google Scholar 

  9. Fleischer, J., Lanza, G., Schlipf, M.: Statistical quality control in micro-manufacturing through multivariate μ-EWMA chart. CIRP Ann. Manufact. Technol. 57(1), 451–472 (2008)

    Article  Google Scholar 

  10. Fleischer, J., Herder, S., Leberle, U.: Automated supply of micro parts based on the micro slide conveying principle. CIRP Ann. Manufact. Technol. 60(1), 13–16 (2011)

    Article  Google Scholar 

  11. Grutzeck, L., Kiesewetter, L.: Downscaling of grippers for micro assembly. Microsystems Technol. 8, 27–31 (2002)

    Article  Google Scholar 

  12. Hess, A.: Piezo-hydraulischer Aktor für die Mikrobearbeitung von Metallen, Berichte aus dem Institut für Konstruktion und Fertigung in der Feinwerktechnik, Dissertation, Universität Stuttgart (2002)

    Google Scholar 

  13. Hesselbach, J., Wrege, J., Raatz, A.: Mikromontage. In: Lotter, B., Wiendahl, H.-P (eds.) Montage in Der Industriellen Produktion, Springer Berlin, Heidelberg, New York, pp. 463–482 (2006)

    Google Scholar 

  14. Hesse, S.: Greifertechnik: Effektoren für Roboter und Automaten. Hanser München (2011)

    Google Scholar 

  15. Kuhfuß, B., Moumi, E., Tracht, K., Weikert, F., Vollertsen, F., Stephen, A.: Process chains in microforming technology using scaling effects. In: Menary, G. (ed.) 14th International ESAFORM Conference on Material Forming (ESAFORM 2011), Belfast, pp. 535–540 (2011)

    Google Scholar 

  16. Lotter, B., Wiendahl, H.-P.: Montage in der industriellen Produktion. Springer, New York (2006)

    Google Scholar 

  17. Paldan, N.A., Arentoft, M., Eriksen, R.S.: Production equipment and processes for bulk formed micro components, ESAFORM MS6-6 (2007)

    Google Scholar 

  18. Pokar, G.: Untersuchung zum Einsatz von Ebenen Parallelrobotern in der Mikromontage. Vulkan Verlag, Essen (2004)

    Google Scholar 

  19. Saotome, Y., Inoue, A.: New amorphous alloys as micromaterials and the processing technologies. In: Proceedings of IEEE, pp. 288–293 (2000)

    Google Scholar 

  20. Schepp, F.: Linearmotorgetriebene Pressen für die Stanztechnik, Berichte aus Produktion und Umformtechnik, Dissertation, Shaker Verlag, Aachen (2002)

    Google Scholar 

  21. Schulze Niehoff, H., Vollertsen, F.: Versatile micro forming press. In: Proceedings 2nd ICNFT, BIAS Verlag, Bremen, pp. 167–176 (2007)

    Google Scholar 

  22. Schulze Niehoff, H.: Entwicklung Einer Hochdynamischen, zweifachwirkenden Mikroumformpresse, Dissertation, University of Bremen, BIAS Verlag (2008)

    Google Scholar 

  23. Tracht, K.; Schenck, C.; Weikert, F.; Kuhfuß, B.: Conveyance of micro-cold-formed parts in a linkage. WT Werkstattstechnik Online, 100, 11/12 (2010) 864–868

    Google Scholar 

  24. Tracht, K., Weikert, F., Hanke, T., Kuhfuß, B., Hellwig, C.: Modeling of linked parts in microforming. WT Werkstattstechnik Online, vol. 101, 11/12, pp. 765–769 (2011)

    Google Scholar 

  25. Vandaele, V., Lambert, P., Delchambre, A.: Non-contact handling in microassembly: Acoustical levitation. Precis. Eng. 29, 491–505 (2005)

    Article  Google Scholar 

  26. Werner, J.: Methoden zur roboterbasierten förderbandsynchronen Fließmontage am Beispiel der Automobilindustrie. Herbert Utz Verlag, München (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bernd Kuhfuss , Hendrik Schulze Niehoff , Volker Piwek or Kirsten Tracht .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kuhfuss, B. (2013). Machines and Handling. In: Vollertsen, F. (eds) Micro Metal Forming. Lecture Notes in Production Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30916-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30916-8_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30915-1

  • Online ISBN: 978-3-642-30916-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics