Skip to main content

Tool Making

  • Chapter
  • First Online:
Micro Metal Forming

Part of the book series: Lecture Notes in Production Engineering ((LNPE))

Abstract

Tool materials for forming processes require good ductility with high hardness and high wear resistance. In the case of micro cold forming, additional aspects have to be considered in the tool material selection. The tool shape requires structures of microscopic dimensions, i.e. edge radii, bores and notches in submillimeter sizes, which need to be formed or machined. Viscous lubricants should be avoided, because they hinder the further handling of the workpieces. The use of tools without lubricant accelerates wear and might aggravate corrosion. Wear and corrosion debris on the tool surface are unacceptable for working with microscopic structures. Thermal effects of friction require additional attention to chemical processes at the surface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The data only represent the enthalpies of vaporization and melting. The total energies including the heating of the material and relevant enthalpy contributions are, hence, 7.8 and 1 kJ, respectively.

Abbreviations

a:

Distance (mm)

Aa, xy :

Laser affected area (m2)

aec :

Width of cut (µm)

ala :

Laser track distance (µm)

AMus :

Ultrasonic amplitude (µm)

apc :

Depth of cut (µm)

cp :

Specific heat capacity (J kg−1 K−1)

cR :

Material optical reflectivity

cα :

Optical absorption coefficient (m−1)

d:

Diameter (µm)

D:

Diffusion coefficient

dG :

Diamond grain size (µm)

dla :

Laser beam diameter (µm)

dmin :

Laser subtracted diameter (M)

E:

Elastic modulus (N/mm²)

EA:

Activation energy (J)

F:

Force (N)

FN :

Normal force (N)

f:

Focal distance (m)

fla :

Pulse frequency (laser repetition time) (Hz)

fus :

Ultrasonic frequency (Hz)

fz :

Feed per tooth (µm)

HK:

Knoop hardness

ha :

Laser affected depth (m)

hc :

Chip thickness (µm)

hcu :

Uncut chip thickness (µm)

hcu,crit :

Material specific, critical uncut chip thickness (µm)

hcu,max :

Maximum uncut chip thickness (µm)

hcu,min :

Minimum uncut chip thickness (µm)

hs :

Laser subtracted depth (m)

hλ :

Optical penetration depth (m)

I:

Incident intensity (W m−2)

I0 :

Peak incident intensity (W m−2)

Iab :

Peak absorbed intensity (W m−2)

ich :

Chemical activity

j:

Number of cutting edges

K:

Thermal conductivity (W m−1 K−1)

Kc :

Fracture toughness (MPa* m1/2)

KF :

Faraday constant

Kp :

Preston constant

kλ :

Optical damping constant

p:

Pressure (N/mm²)

Pla :

Average laser power (W)

PRR :

Reactive sticking probability

Pus :

Ultrasonic power (W)

Q′w :

Specific material removal rate (mm³/(mm*s))

Qw :

Material removal rate (mm³/s)

r:

Radius (mm)

r0 :

Radius of the diffusing particles

Ra:

Roughness, profile, arithmetic (nm)

Rz:

Roughness, profile, average maximum height (m)

ra, x(y) :

Laser affected radius (m)

rL :

Laser beam radius at the optical lens (m)

rM :

Laser melted radius (m)

rs, x(y) :

Laser subtracted radius (m)

rth :

Thermal penetration radius (heat affected zone) (m)

rw :

Laser beam waist radius (m)

rβ :

Cutting edge radius (µm)

Sa:

Roughness, area, arithmetic (nm)

Sk:

Roughness, area, core roughness depth (nm)

Spk:

Roughness, area, reduced summit height (nm)

Sq:

Roughness, area, root mean squared (nm)

Svk:

Roughness, area, reduced valley depth (nm)

t:

Time (s)

T:

Absolute temperature (K)

T0 :

Ambient (initial) temperature (K)

TB :

Absolute temperature of boiling (K)

TM :

Absolute temperature of melting (K)

Tsc :

Absolute surface temperature (K)

tB :

Material boiling time (s)

tD :

Dwell time of laser-material interaction (pulse duration) (s)

te-ph :

Electron-phonon scattering time (s)

tR :

Material removal time (s)

\( \dot{V} \) :

Volume material removal rate (m3/s)

\( \dot{V}_{e} \) :

Flow rate of the etchant (ml/min)

vc :

Cutting speed (m/min)

vf :

Feed velocity (mm/min)

vf :

Feed rate (m s−1)

vrel :

Relative velocity (m/s)

vscan :

Scanning speed (m s−1)

vt :

Tangential velocity (mm/s)

vz :

Drilling velocity (m s−1)

Z:

Densification ratio

zn :

Powder bed height for the nth layer (mm)

zT :

Platform lowering distance (mm)

α:

Thermal expansion coefficient (K−1)

β:

Angle of incidence (°)

γ:

Rake angle (°)

δ:

Thickness of the Nernst layer

ΔHM :

Enthalpy of melting (J kg−1)

ΔHV :

Enthalpy of vaporization (J kg−1)

ζ:

Beam quality factor

η:

Dynamic viscosity of the liquid

θg :

Angle of grit blasting (°)

θmf :

Angle of molten material front (°)

θ0 :

External angle of laser light incidence (°)

ρ:

Material density (kg m−3)

ρbulk :

Density of the consolidated powder (g/cm³)

ρpowder :

Density of the loose powder (g/cm³)

κ:

Thermal diffusion coefficient (m2 s−1)

κel :

Electron diffusion coefficient (m2 s−1)

λ:

Optical wavelength (M)

ϕ:

Laser fluence (J m−2)

ϕab :

Absorbed laser fluence (J m−2)

ϕLoss :

Fluence losses (J m−2)

ψel :

Electrochemical potential

References

  1. Aharonov, R.R., Chhowalla, M., Dhar, S., Fontana, R.P.: Factors affecting growth defect formation in cathodic arc evaporated coatings. Surf. Coat. Technol. 82, 334–343 (1996)

    Article  Google Scholar 

  2. Aramcharoen, A., Mativenga, P.T.: Size effect and tool geometry in micromilling of tool steel. Precision Engineering 33, 402–407 (2009)

    Article  Google Scholar 

  3. Bäuerle, D.: Laser Processing and Chemistry, 4th edn. Springer Berlin, Heidelberg (2011)

    Book  Google Scholar 

  4. Bifano, T.G., Dow, T.A., Scattergood, R.O.: Ductile-regime grinding: A new technology for machining brittle materials. J. Eng. Ind. Trans. ASME 113(2), 184–189 (1991)

    Article  Google Scholar 

  5. Bobzin, K., Bagcivan, N., Immich, P., Warnke, C., Klocke, F., Zeppenfeld, C., Mattfeld, P.: Advancement of a nanolaminated TiHfN/CrN PVD tool coating by a nano-structured CrN top layer in interaction with a biodegradable lubricant for green metal forming. Surf. Coat. Technol. 203, 3184–3188 (2009)

    Article  Google Scholar 

  6. Brinksmeier, E., Klopfstein, M., Riemer, O.: Removal of diamond by solid metals. In: 2nd International Conference on Nanomanufacturing and the 1st CIRP Conference on Nanomanufacturing (2010)

    Google Scholar 

  7. Brinksmeier, E., Riemer, O., Gessenharter, A., Autschbach, L.: Polishing of structured molds. CIRP Ann. Manuf. Technol. 53(1), 247–250 (2004)

    Article  Google Scholar 

  8. Brinksmeier, E., Riemer, O., Gessenharter, A.: Finishing of structured surfaces by abrasive polishing. Precis. Eng. 30(3), 325–336 (2006)

    Article  Google Scholar 

  9. Brinksmeier, E., Riemer, O., Twardy, S.: Tribological behaviour of micro structured surfaces for micro forming tools. Int. J. Mach. Tools Manuf. 50(4), 425–430 (2010)

    Article  Google Scholar 

  10. Brinksmeier, E., Riemer, O., Rickens, K., Meiners, K.: Kinematics in ultra-precision grinding of WC moulds. Int. J. Nanomanuf. 7(3–4), 199–213 (2011)

    Article  Google Scholar 

  11. Butt, H.-J., Graf, K., Kappl, M.: Physics and Chemistry of Interfaces. Wiley-VCH, Weinheim (2003)

    Book  Google Scholar 

  12. Cappellia, E., Orlandob, S., Matteia, G., Armigliatoc, A.: Boron nitride thin films deposited by RF plasma reactive pulsed laser ablation as interlayer between WC–Co hard metals and CVD diamond films. Surf. Coat. Technol. 180–181, 184–189 (2004)

    Article  Google Scholar 

  13. Cekada, M., Panjan, P., Kek-Merl, D., Panjan, M., Kapun, G.: SEM study of defects in PVD hard coatings. Vacuum 82, 252–256 (2008)

    Article  Google Scholar 

  14. Choy, K.L.: Chemical vapour deposition of coatings. Prog. Mater. Sci. 48, 57–170 (2003)

    Article  Google Scholar 

  15. Chrysolouris, G., Bredt, J., Kordas, S., Wilson, E.: Theoretical aspects of a laser machine tool. J. Eng. Ind. 110, 65–70 (1988)

    Article  Google Scholar 

  16. Chun, M.K., Rose, K.: Interaction of high-intensity laser beams with metals. J. Appl. Phys. 41, 614 (1970)

    Article  Google Scholar 

  17. Craeghs, T., Clijsters, S., Yasa, E., Bechmann, F., Berumen, S., Kruth, J.-P.: Determination of geometrical factors in layerwise laser melting using optical process monitoring. Opt. Lasers Eng. 49(12), 1440–1446 (2011)

    Article  Google Scholar 

  18. Cui, C., Schulz, A., Uhlenwinkel, V., Zoch, H.-W.: Spray-formed stainless steel matrix composites with co-injected carbide particles. Metall. Mater. Trans. A 42(8), 2442–2455 (2011)

    Article  Google Scholar 

  19. Dahotre, N.B., Harimkar, N.P.: Laser Fabrication and Machining of Materials. Springer, New York (2008)

    Google Scholar 

  20. Dausinger, F.: Femtosecond technology for precision manufacturing: Fundamental and technical aspects. Riken Rev. 50, 77 (2003)

    Google Scholar 

  21. De Lodyguine, J.S.: Illuminant for incandecent lamps. US patent 575, 002 (1893)

    Google Scholar 

  22. De Silva, A.K.M., Pajak, P.T., McGeough, J.A., Harrison, D.K.: Thermal effects in laser assisted jet electrochemical machining. CIRP Ann. Manuf. Technol. 60, 243–246, (2011)

    Google Scholar 

  23. Dobrzañski, L.A., Kloc-Ptaszna, A., Matula, G., Torralba, L.B.: Structure of the gradient carbide steels of HS 6–5-2 high-speed steel matrix. Arch. Mater. Sci. Eng. 28(10), 589–592 (2007)

    Google Scholar 

  24. Doppelt, P.: Why is coordination chemistry stretching the limits of micro-electronics technology? Coord. Chem. Rev. 178–180, 1785–1809 (1998)

    Article  Google Scholar 

  25. Dornfeld, D., Min, S., Takeuchi, Y.: Recent advances in mechanical micromachining. CIRP Ann. Manuf. Technol. 55(2), 745–768 (2006)

    Article  Google Scholar 

  26. Dumitru, G., Romano, V., Weber, H.P., Sentis, M., Marine, W.: Femtosecond ablation of ultrahard materials. Appl. Phys. A 74, 729–739 (2002)

    Article  Google Scholar 

  27. Elahinia, M.H., Hashemi, M., Tabesh, M., Bhaduri, S.B.: Manufacturing and processing of NiTi implants: A review. Prog. Mater. Sci. 57(5), 911–946 (2012)

    Article  Google Scholar 

  28. Fischmeister, H.F., Exner, H.E., Poech, M.H., Kohlhoff, S., Gumbsch, P., Schmauder, S., Sigl, L.S., Spiegler, R.: Modelling fracture processes in metals and composite materials. Z. Metallkde 80(12), 839–846 (1989)

    Google Scholar 

  29. Gäbler, J., Schäfer, L., Menze, B., Hoffmeister, H.W.: Micro abrasive pencils with CVD diamond coating. Diam. Relat. Mater. 12, 707–710 (2003)

    Article  Google Scholar 

  30. Gagliano, F.P., Paek, U.C.: Observation of laser-induced explosion of solid materials and correlation with theory. Appl. Opt. 13, 274–279 (1974)

    Article  Google Scholar 

  31. Gajapathi, C.S., Mitra, S.K., Mendez, P.F.: Controlling heat transfer in micro electron beam welding using volumetric heating Int. J. Heat Mass Transf. 54, 5545–5553 (2011)

    Article  MATH  Google Scholar 

  32. Garibotti, D.J.: Dicing of micro-semiconductors, US Patent 3,112,850 (1963)

    Google Scholar 

  33. Ghany, K.A., Newishy, M.: Cutting of 1.2 mm thick austenitic stainless steel sheet using pulsed and CW Nd:YAG laser. J. Mater. Process. Technol. 168, 438–447 (2005)

    Article  Google Scholar 

  34. Gu, D., Wang, Z., Shen, Y., Li, Q., Li, Y.: In-situ TiC particle reinforced Ti–Al matrix composites: Powder preparation by mechanical alloying and selective laser melting behavior. Appl. Surf. Sci. 255, 9230–9240 (2009)

    Article  Google Scholar 

  35. Harp, W.R., Dilwith, J.R., Tu, J.F.: Laser ablation using a long-pulsed, high fluence, CW single-mode fiber laser. J. Mater. Process. Technol. 198, 22–30 (2008)

    Article  Google Scholar 

  36. Harrison, P.M., Henry, M., Henderson, I., Brownell, M.: Laser milling of metallic and non-metallic substrates in the nanosecond regime with Q-switched diode pumped solid state lasers. Proc. SPIE 5448, 624–633 (2004)

    Article  Google Scholar 

  37. Henry, M., Harrison, P.M., Henderson, I., Brownell, M.: Laser milling–A practical industrial solution for machining a wide variety of materials. Proc. SPIE 5662, 627–632 (2004)

    Article  Google Scholar 

  38. Herziger, G.; Kreutz, E.W.: Fundamentals of laser micromachining of metals. In: Bäuerle, D. (ed.) Laser Processing and Diagnostics, Springer Series in Chemical Physics, vol. 39, p. 90. Springer Berlin, Heidelberg (1984)

    Google Scholar 

  39. Holleck, H., Schier, V.: Multilayer PVD coatings for wear protection. Surf. Coat. Technol. 76–77, 328–336 (1995)

    Article  Google Scholar 

  40. Hua, Z., Jiawen, X.: Modeling and experimental investigation of laser drilling with jet electrochemical machining. Chin. J. Aeronaut. 23, 454–460 (2010)

    Article  Google Scholar 

  41. Hügel, H., Graf, TH.: Laser in der Fertigung, Vieweg + Teubner, Wiesbaden, pp. 378–382 (2009)

    Google Scholar 

  42. Ihlemann, J., Scholl, A., Schmidt, H., Wolff-Rottke, B.: Nanosecond and femtosecond excimer laser ablation of fused silica. Appl. Phys. A 54, 363–368 (1992)

    Article  Google Scholar 

  43. Ivarson, A., et al.: The role of oxidation in laser cutting stainless and mild steel. J. Laser Appl. 3, 41–45 (1991)

    Article  Google Scholar 

  44. Ji, G., Grosdidier, T., Bernard, F., Paris, S., Gaffet, E., Launois, S.: Bulk FeAl nanostructured materials obtained by spray forming and spark plasma sintering. J. Alloy. Compd. 434–435, 358–361 (2007)

    Article  Google Scholar 

  45. Kang, Y.S., Sharma, S.K., Sanders, J.H., Voevodin, A.A.: Finite element analysis of multilayered and functionally gradient tribological coatings with measured material properties. Tribol. Trans. 51(6), 817–828 (2008)

    Article  Google Scholar 

  46. Kaplan, A.F.H.: An analytic model of metal cutting with a laser beam. J. Appl. Phys. A 79, 2198–2208 (1996)

    Google Scholar 

  47. Kármán, Th: Festigkeitslehre unter allseitigem Druck. Z. Ver. Dtsch. Ing. 55(42), 1749–1757 (1911)

    Google Scholar 

  48. Karnakis, D.M., Knowles, M.R.H., Petkov, P.V., Dobrev, T., Dimov, S.S.: Surface integrity optimisation in ps-laser milling of advanced engineering materials. In: Proceedings of the 4th International WLT-Conference on Lasers in Manufacturing, Munich (2007)

    Google Scholar 

  49. Karnakis, D.M., Mortimer, V., Knowles, M.R.H.: Recent advances in ultrafast laser micromachining systems for material micromanufacturing. In: 8th International Conference and Exhibition on Laser Metrology, Machine Tool, CMM & Robotic Performance, Cardiff, Wales (2007)

    Google Scholar 

  50. Karnakis, D., Rutterford, G., Knowles, M., Dobrev, T., Petkov, P., Dimov, S.: High quality laser milling of ceramics, dielectrics and metals using nanosecond and picosecond lasers. Proc. SPIE 6106, 610604 (2006)

    Article  Google Scholar 

  51. Khor, K.A., Dong, Z.L., Gu, Y.W.: Influence of oxide mixtures on mechanical properties of plasma sprayed functionally graded coating. Thin Solid Films 368, 86–92 (2000)

    Article  Google Scholar 

  52. Kieback, B., Neubrand, A., Riedel, H.: Processing techniques for functionally graded materials. Mater. Sci. Eng. A 362, 81–105 (2003)

    Article  Google Scholar 

  53. Koch, N.: Technologie zum Schleifen asphärischer optischer Linsen. PhD Thesis, Rheinisch-Westfälische Technische Hochschule Aachen, Shaker Verlag Aachen (1991)

    Google Scholar 

  54. Kulmburg, A.: The microstructure of tool steels–An overview for the practice. Part I: Classification, systematics and heat treatment of tool steels. Pract. Metallography 35(4), 181–202 (1998)

    Google Scholar 

  55. Kusakabe, Y., Ohnishi, H., Takahama, T., Goto, Y., Machida, K.: Conformal deposition on a deep-trenched substrate by MOCVD. Appl. Surf. Sci. 70–71, 763–767 (1993)

    Article  Google Scholar 

  56. Levy, G.N.: The role and future of the laser technology in the additive manufacturing environment. Phys. Procedia. Part A, 5, 65–80 (2010)

    Google Scholar 

  57. Lewis, L.J., Perez, D.: Theory and simulation of laser ablation—From basic mechanisms to applications. In: Sugioka, K., Meunier, M., Piqué, A (eds.) Laser Precision Microfabrication.Springer (2010)

    Google Scholar 

  58. Li, L., Kim, J.H., Shukor, M.H.: Grit blast assisted laser milling/grooving of metallic alloys. CIRP Ann. Manuf. Technol. 54, 183–186 (2005)

    Article  Google Scholar 

  59. Lumley, R.M.: Controlled separation of brittle materials using a laser. Am. Ceram. Soc. Bull. 48, 850–854 (1969)

    Google Scholar 

  60. Marshall, D.B., Lawn, B.R., Cook, R.F.: Microstructural effects on grinding of alumina and glass-ceramics. Commun. Am. Ceram. Soc. 70(6), 139–140 (1987)

    Article  Google Scholar 

  61. Masuzawa, T., Tönshoff, H.K.: Three-dimensional micromachining by machine tools. CIRP Ann. Manuf. Technol. 46(2), 621–628 (1997)

    Article  Google Scholar 

  62. Mattox, D.: Physical vapor deposition (PVD) processes. Met. Finish. 93, 387–400 (1995)

    Article  Google Scholar 

  63. Mattox, D.: Handbook of physical vapor deposition (PVD) processing. Elsevier (2010) ISBN: 9780815520375

    Google Scholar 

  64. Mehrafsun, S., Zhang, P., Vollertsen, F., Goch, G.: Laser-chemical precision machining of micro forming tools at low laser powers. SPIE LASE 2012 laser-based micro- and nanopackaging and assembly, vol. 6, SPIE 8244-19 (CD-Rom) (2012)

    Google Scholar 

  65. Meiners, W.: Direktes Selektives Laser Sintern einkomponentiger metallischer. Werkstoffe PhDthesis RWTH Aachen(1999)

    Google Scholar 

  66. Miyashita, M. (ed.): 1st annual precision engineering conference, North Carolina State University, Raleigh, NC, USA (1985)

    Google Scholar 

  67. Mohr, O.: Welche Umstände bedingen die Elastizitätsgrenze und den Bruch eines Materials. Zeitschrift des Vereins deutscher Ingenieure 24 (1900) 1524–1530 and 1572–1577

    Google Scholar 

  68. Musil, J., Fiala, J.: Plasma spray deposition of graded metal-ceramic coatings. Surf. Coat. Technol. 52, 211–220 (1992)

    Article  Google Scholar 

  69. Nowak, R., Metev, S.: Thermochemical laser etching of stainless steel and titanium in liquids. Appl. Phys. A 63, 133–138 (1996)

    Article  Google Scholar 

  70. Nüsser, C., Wehrmann, I., Willenborg, E.: Influence of intensity distribution and pulse duration on laser micro polishing. Phys. Procedia. 12, 462–471 (2011)

    Article  Google Scholar 

  71. Osborn, J: Die fast, live long. AMS September/October 2003, www.automotivemanufacturingsolutions.com

  72. Panjan, P., Cekada, M., Panjan, M., Kek-Merl, D.: Growth defects in PVD hard coatings. Vacuum 84, 209–214 (2010)

    Article  Google Scholar 

  73. Panjan, P., Cekada, M., Panjan, M., Kek-Merl, D., Zupani, F., Curkovi, L., Paskvale, S.: Surface density of growth defects in different PVD hard coatings prepared by sputtering. Vacuum 86, 794–798 (2012)

    Article  Google Scholar 

  74. Paul, E., Evans, C.J., Mangamelli, A., McGlauflin, M.L., Polvani, R.S.: Chemical aspects of tool wear in single point diamond turning. Precis. Eng. 18, 4–19 (1996)

    Article  Google Scholar 

  75. Petkov, P.V., Scholz, S., Dimov, S.: Strategies for material removal in laser milling. Proceedings of 4M2008 International Conference on Multi-Material Micro Manufacture, Cardiff, UK (2008)

    Google Scholar 

  76. Poech, M.H., Fischmeister, H., Spiegler, R.: Deformation and fracture of two-phase materials. In: Tenckhoff, E., Vöhringer, O. (eds.) Microstructure and Mechanical Properties of Materials. DGM Informationsgesellschaft-Verlag, Oberursel (1990)

    Google Scholar 

  77. Polini, R., Mantini, F.P., Braic, M., Amar, M., Ahmed, W., Taylor, H.: Effects of Ti- and Zr-based interlayer coatings on the hot filament chemical vapour deposition of diamond on high speed steel. Thin Solid Films 494, 116–122 (2006)

    Article  Google Scholar 

  78. Qi, L., Nishii, K., Yasui, M., Aoki, H., Namba, Y.: Femtosecond laser ablation of sapphire on different crystallographic facet planes by single and multiple laser pulses irradiation. Opt. Lasers Eng. 48, 1000–1007 (2010)

    Article  Google Scholar 

  79. Rajaram, N., Sheikh-Ahmad, J., Cheraghi, S.H.: CO2 laser cut quality of 4130 steel. Int. J. Mach. Tools Manuf. 43, 351–358 (2003)

    Article  Google Scholar 

  80. Ready, J.F.: Industrial Applications of Lasers, 2nd edn. Elsevier Academic Press, NY (1997)

    Google Scholar 

  81. Renevier, N.M., Hamphire, J., Fox, V.C., Witts, J., Allen, T., Teer, D.G.: Advantages of using self-lubricating, hard, wear-resistant MoS -based coatings. Surf. Coat. Technol. 142–144, 67–77 (2001)

    Article  Google Scholar 

  82. Rombouts, M.: Selective laser sintering/melting of iron-based powders. PhD thesis Katholieke Universiteit Leuven (2006)

    Google Scholar 

  83. Saeki, M., Kuriyagawa, T., Lee, J.S., Syoji, K.: Machining of aspherical opto-device parallel grinding method. In: ASPE 16th Annual Meeting, vol. 25, pp. 433–436 (2001)

    Google Scholar 

  84. Schneider, R., Schulz, A., Bertrand, C., Kulmburg, A., Oldewurtel, A., Uhlenwinkel, V., Viale, D.: The performance of spray formed tool steels in comparison to conventional route material. In: Bergström, J., Frederiksson, G., Johannsson, M., Knotik, O., Thurvander, E. (eds.) The Use of Tool Steels: Experience and research, vol. 2, Proceedings of the 6th International Tooling Conference, Karlstad, Sweden, 10–13 September 2002, Karlstad University (2002) 943–959

    Google Scholar 

  85. Schneiders, T., Berns, H., Theisen, W.: Neue Werkzeugwerkstoffe aus Pulvermischungen HTM. J Heat Treatm. Mater. 60(3), 112–123 (2005)

    Google Scholar 

  86. Schruff, I., Schüler, V., Spiegelhauer, C.: Advanced tool steels produced via spray forming. In: Bergström, J., Frederiksson, G., Johannsson, M., Knotik, O., Thurvander, E. (eds.) The Use of Tool Steels: Experience and Research, vol. 2. Proceedings of the 6th International Tooling Conference, Karlstad, Sweden, Sep 10–13 2002, Karlstad University (2002), pp. 1159–1179

    Google Scholar 

  87. Schulz, A., Uhlenwinkel, V., Bertrand, C., Kohlmann, R., Kulmburg, A., Oldewurtel, A., Schneider, R., Viale, D.: Nitrogen pick-up during spray forming of high alloyed steels and its influence on microstructure and properties of the final products. In: Proceedings of the 2nd International Conference on Spray Deposition and Melt Atomization (SDMA 2003) and 5th International Conference on Spray Forming (ICSF V), 22–25 June 2003, Bremen, Germany, (2003) 4-33–4-45

    Google Scholar 

  88. Schulz, A., Uhlenwinkel, V., Bertrand, C., Escher, C., Kohlmann, R., Kulmburg, A., Montero-Pascual, M.C., Rabitsch, R., Schneider, R., Stocchi, D., Viale, D.: Sprühkompaktierte hochlegierte Werkzeugstähle—Herstellung und Eigenschaften. HTM Z.Werkst. Wärmebeh. Fertigung, 60, 2 (2005) S. 87–95

    Google Scholar 

  89. Schwander, M., Partes, K.: A review of diamond synthesis by CVD processes. Diam. Relat. Mater. 20, 1287–1301 (2011)

    Article  Google Scholar 

  90. Sinhoff, V.R.: Feinbearbeitung optischer Gläser in der Kleinserie. PhD Thesis, Rheinisch-Westfälische Technische Hochschule Aachen, Shaker Verlag Aachen (1997)

    Google Scholar 

  91. Spiegelhauer, C.: Industrial production of tool steels using the spray forming technology. In: Bergström J., Frederiksson, G., Johannsson, M., Knotik, O., Thurvander, E. (eds.) The use of tool steels: Experience and research, vol. 2. Proceedings of the 6th International Tooling Conference, pp. 1101–1109, Karlstad, Sweden, 10–13 Sep 2002, Karlstad University (2002)

    Google Scholar 

  92. Steffens, H.-D., Lebküchner-Neugebauer, J., Dvorak, M., Dammer, R.: Mechanical and technological properties of vacuum plasma sprayed and hot isostatically pressed composite materials. Materialwiss. Werkstofftech. 22, 468–472 (1991)

    Article  Google Scholar 

  93. Stein, C., Keunecke, M., Bewilogua, K., Chudoba, T., Kölker, W., Van den Berg, W.: Cubic boron nitride based coating systems with different interlayers for cutting inserts. Surf. Coat. Technol. 205, 103–106 (2011)

    Article  Google Scholar 

  94. Stephen, A., Vollertsen, F.: 3D microstructuring of mold inserts by laser-based removal. In: Baltes, H., Brand, O., Fedder, G.K., Hierold, C., Korvink, J.G., Tabata, O., Löhe, D., Haußelt, J. (eds.) Advanced Micro and Nanosystems, Microengineering of Metals and Ceramics, vol. 3, pp. 132–159. Wiley-VCH, Weinheim (2005)

    Google Scholar 

  95. Stephen, A.; Walther, R.; Vollertsen, F.:Removal rate model for laser chemical micro etching. Lasers in Manufacturing LiM, Munich (2009) 615-619

    Google Scholar 

  96. Stephen, A., Vollertsen, F.: Mechanisms and processing limits in laser thermochemical machining. Ann. CIRP 59(1), 251–254 (2010)

    Article  Google Scholar 

  97. Sun, S., Pugh, M.: Interfacial properties in steel–steel composite materials. Mater. Sci. Eng. A 318, 320–327 (2001)

    Article  Google Scholar 

  98. Suttmann, O., Moalem, A., Kling, R., Ostendorf, A.: Drilling, cutting, welding, marking and microforming. In: Sugioka, K., Meunier, M., Piqué, A. (eds.) Laser Precision Microfabrication, Springer (2010)

    Google Scholar 

  99. Theiler, C., Seefeld, T., Sepold, G.: Deposition of graded metal matrix composites by laser beam cladding laser assisted net shape engineering (LANE’01). In: Geiger, M., Otto, A. (eds.) Meisenbach–Verlag Bamberg, pp. 421–429 (2001)

    Google Scholar 

  100. Theisen, W.: HIP cladding of tools. In: Bergström, J., Frederiksson, G., Johannsson, M., Knotik, O., Thurvander, E (eds.) The use of tool steels: Experience and research, vol. 2, Proceedings of the 6th International Tooling Conference, pp. 947–960, Karlstad, Sweden, 10–13 Sep 2002, Karlstad University (2002)

    Google Scholar 

  101. Tohme, Y.E.: Grinding aspheric and freeform micro-optical molds. Proc. SPIE 6462, 64620K (2007)

    Article  Google Scholar 

  102. Tsai, C.-H., Chen, H.-W.: Laser milling of cavity in ceramic substrate by fracture-machining element technique. J. Mater. Process. Technol. 136, 158–165 (2003)

    Article  Google Scholar 

  103. Tsai, C.-H., Chen, H.-W.: The laser shaping of ceramic by a fracture machining technique. Int. J. Adv. Manuf. Technol. 23, 342–349 (2004)

    Article  Google Scholar 

  104. Twardy, S., Riemer, O., Brinksmeier, E.: Tribology of micro milled surfaces. Key engineering materials. Adv. Precis. Eng. 447–448, 681–684 (2010)

    Google Scholar 

  105. Uhlenwinkel, V., Schulz, A., Zoch, H.W.: Presentation at the “FAT Forum Nano Auto”, Frankfurt a.M, 28 Nov 2007

    Google Scholar 

  106. Uhlmann, E., Schauer, E.: Dynamic load and strain analysis for the optimization of micro end mills. CIRP Ann. Manuf. Technol. 54, 75–78 (2005)

    Article  Google Scholar 

  107. Vollertsen, F., Partes, K., Schubnov, A.: Thin nanocrystalline diamond films deposited by LaPlas-CVD at atmospheric pressure. Prod. Eng. Res. Dev. 4, 9–14 (2010)

    Article  Google Scholar 

  108. Wahlroos, J.M., Liimatainen, T.P.: Interface adherence of spray formed compound tube. In: Proceedings of the 2nd International Conference on Spray Forming, pp. 225–234, 13–15 Sep 1993, Swansea, UK, Woodhead Publishing Limited (1993)

    Google Scholar 

  109. Wang, R., Fichtborn, K.A.: Computer simulation of metal thin-film epitaxy. Thin Solid Films 272, 223–228 (1996)

    Article  Google Scholar 

  110. Yadroitsev, I., Smurov, I.: Selective laser melting technology: from the single laser melted track stability to 3D parts of complex shape. Phys. Procedia. 5, 551–560 (2010)

    Article  Google Scholar 

  111. Yang, Y., Hannula, S.-P.: Development of precision spray forming for rapid tooling. Mater. Sci. Eng. A 477, 63–68 (2008)

    Article  Google Scholar 

  112. Zaeh, M.F., Branner, G.: Investigations on residual stresses and deformations selective laser melting. Prod. Eng. Res. Devel. 4, 35–45 (2010)

    Article  Google Scholar 

  113. Zhang, H., Wang, G., Luo, Y., Nakaga, T.: Rapid hard tooling by plasma spraying for injection molding and sheet metal forming. Thin Solid Films 390, 7–12 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ekkard Brinksmeier , Alwin Schulz , Knut Partes , Helgi Diehl , Helgi Diehl , Salar Mehrafsun or Ekkard Brinksmeier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Brinksmeier, E. (2013). Tool Making. In: Vollertsen, F. (eds) Micro Metal Forming. Lecture Notes in Production Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30916-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30916-8_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30915-1

  • Online ISBN: 978-3-642-30916-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics