Skip to main content

Sheet Metal Forming

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Production Engineering ((LNPE))

Abstract

Deep drawing is one of the most important processes in sheet metal forming and has a great application potential for manufacturing parts with complex shapes, even those with very small dimensions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

d0 :

pre-hole diameter (mm)

dP :

punch diameter (mm)

FP :

punch force (N)

FBLH :

blankholder force (N)

g:

drawn clearence (mm)

I:

Inertia moment (kg × m²)

K:

spring back ratio

kf :

flow stress (N/mm²)

rD :

die radius (µm)

s0 :

initial sheet thickness (µm)

s1 :

final sheet thickness (µm)

β:

drawing ratio

βmax :

Limit drawing ratio

φ:

logarithmic degree of deformation

σpl 0.2 :

yield strength (N/mm²)

σt :

tangential stress (N/mm²)

σr :

radial stress (N/mm²)

σax :

axial stress (N/mm²)

References

  1. Aden, M., Beyer, E., Herziger, G., Kunze, H.: Laser-induced vaporization of a metal surface. J. Phys. Appl. Phys. 25(4), 57–65 (1992)

    Article  Google Scholar 

  2. Barchukov, A.I., Bunkin, F.V., Konov, V.I., Prokhorov, A.M.: Low threshold breakdown of air near a target by CO2 radiation, and the associated large recoil momentum. JETP-Lett. 17(8), 294–296 (1973)

    Google Scholar 

  3. Barchukov, A.I., Bunkin, F.V., Konov, V.I., Lyubin, A.A.: Investigation of low-threshold gas breakdown near solid targets by CO2 laser radiation. Soviet Phys. JETP 39(3), 469–477 (1974)

    Google Scholar 

  4. Baumeister, M.: Dynamische laser-mikroperforation mit single-mode faserlaser, Dissertation Universität Bremen, Strahltechnik Band 38, BIAS (2009)

    Google Scholar 

  5. Bergmann, H.W., Hügel, H.: Modellierung und Diagnose des Abtragsprogesses, in: Strahl-Stoff-Wechselwirkung bei der Laserstrahlbearbeitung 2, Hrsg.: Gerd Sepold, Manfred Geiger, Strahltechnik Band 6, BIAS Verlag, Bremen 35–44 (1998)

    Google Scholar 

  6. Cheung, C.F., Lee, W.B., Chiu, W.M.: An investigation of tool wear in the dam-bar cutting of integrated circuit packages. Wear 237, 274–282 (2000)

    Article  Google Scholar 

  7. Chern, G.L., Wang, S.D.: Punching of noncircular micro-holes and development of micro-forming. Precis. Eng. 31, 210–217 (2007)

    Article  Google Scholar 

  8. Diehl, A., Engel, U., Geiger, M.: Mechanical properties and bending behaviour of metal foils. Proc. IMechE Part B: J. Eng. Manuf. 222, 83–91 (2008)

    Article  Google Scholar 

  9. Diehl, A.: Größeneffekte bei Biegeprozessen—Entwicklung einer Methodik zur Identifizierung und Quantifizierung. Dissertation, Universität Erlangen-Nürnberg, Meisenbach (2010)

    Google Scholar 

  10. Dirscherl, M.: Nicht-thermische Mikrojustiertechnik mittels ultrakurzer Laserpulse. Dissertation, Universität Erlangen-Nürnberg, Meisenbach (2007)

    Google Scholar 

  11. Eckstein, R., Geiger, M., Engel, U.: Specific characteristics of micro sheet metal working. In: Proceedings of the International Conference on Sheet Metal (SheMet’99), pp. 529–536. Braunschweig (1999)

    Google Scholar 

  12. Engel, U., Eckstein, R.: Microforming: From basic research to its realization. J. Mater. Process. Technol. 125–126, 35–44 (2002)

    Article  Google Scholar 

  13. Erhardt, R.: Laserunterstütztes Umformen miniaturisierter Bauteile am Beispiel des Tief- und Kragenziehens. Dissertation, PtU Darmstadt (2004)

    Google Scholar 

  14. Fabbro, R., Fournier, J., Ballard, P., Devaux, D., Virmont, J.: Physical study of laser-produced plasma in confined geometry. J. Appl. Phys. 68(2), 775–784 (1968)

    Article  Google Scholar 

  15. Fritz, A.H., Schulze, G.: Fertigungstechnik, 7th edn, p. 239. Springer, Berlin (2006)

    Google Scholar 

  16. Gao, H., Ye, C., Cheng, G.C.: Deformation behaviors and critical parameters in microscale laser dynamic forming. J. Manuf. Sci. Eng. 131, 051011-1–051011-11 (2009)

    Google Scholar 

  17. Geiger, M., Kleiner, M., Eckstein, R., Tiesler, N., Engel, U.: Microforming. Ann. CIRP 50, 445–462 (2001)

    Article  Google Scholar 

  18. Geiger, M., Vollertsen, F., Kals, R.: Fundamentals on the manufacturing of sheet metal microparts. Ann. ClRP 45(1), 277–282 (1996)

    Article  Google Scholar 

  19. Gong, F., Guo, B., Wang, C., Shan, S.: Micro deep drawing of micro cups by using DLC film coated blank holders and dies. Diamond and Related Materials 20, 196–200 (2011)

    Google Scholar 

  20. Hentrich, C.: Untersuchungen zum Aushalsen von Rohren mit starren Werkzeugen unter besonderer Berücksichtigung der Vorlochgeometrie. Dissertation, Otto-von-Guericke-Universität Magdeburg (2002)

    Google Scholar 

  21. Hu, Z., Schulze Niehoff, H., Vollertsen, F.: Tribological size effects in deep drawing. In: Vollertsen, F., Yuan, S. (eds.) International Conference on New Forming Technologies (2nd ICNFT 2007), pp. 573–582. BIAS, Bremen (2007)

    Google Scholar 

  22. Hu, Z.: Analyse des tribologischen Größeneffekts beim Blechumformen, pp. 103–108. Strahltechnik Band 37, BIAS (2009)

    Google Scholar 

  23. Hu, Z., Wielage, H., Vollertsen, F.: Effect of strain rate on the forming limit diagram of thin aluminum foil. In: Dohda, K (ed.) Proceedings of the International Forum on Micro Manufacturing (IFMM’10), pp. 181–186. Nagoya Institute of Technology, Nagoya (2010)

    Google Scholar 

  24. Hu, Z., Vollertsen, F.: Effect of size and velocity dependent friction in deep drawing on the process window. In: Felder, E., Montmitonnet, P. (eds.) 4th International Conference on Tribology in Manufacturing Processes (ICTMP2010), pp. 583–592. Transvalor, Paris (2010)

    Google Scholar 

  25. Hu, Z., Wielage, H., Vollertsen, F.: Forming behavior of thin foils. In: Duflou, J.R., Clarke, R., Merklein, M., Micari, F., Shirvani, B., Kellens, K. (eds.) 14th International Conference on Sheet Metal (SheMet11), pp. 1008–1015. TransTech Publication, Zurich-Durnten (2011)

    Google Scholar 

  26. Hu, Z., Wielage, H., Vollertsen, F.: Economic micro forming using DLC- and TiN-coated tools. J. Technol. Plast. 36(2), 51–58 (2011)

    Google Scholar 

  27. Hu, Z.: Realisation and application of size dependent FEM-simulation for deep drawing of rectangular workpieces. CIRP J. Manuf. Sci. Technol. 4(1), 90–95 (2011)

    Article  Google Scholar 

  28. Hu, Z., Vollertsen, F.: Investigation on the optimisation of the blank shape for micro deep drawing of rectangular parts. In: Hirt, G., Tekkaya, A.E. (eds.) Steel Research International, Special Edition: 10th International Conference on Technology of Plasticity (ICTP2011), pp. 974–978. Wiley-VCH, Weinheim (2011)

    Google Scholar 

  29. Hugenschmidt, M., Schmitt, R.: Plasma supported processing with high-average-power infrared-lasers. Infrared Phys. Technol. 36(1), 159–170 (1995)

    Article  Google Scholar 

  30. Hugenschmidt, M.: Absorptionsverhalten und Energieübertragung gepulster Laserstrahlung auf Werkstoffe. In: Jüptner, W. (ed.) Laser—Von der Wissenschaft zur Anwendung, pp. 67–76. BIAS, Bremen (1997)

    Google Scholar 

  31. Joo, B.Y., Oh, S.I., Jeon, B.H.: Development of micro punching system. CIRP Ann. Manuf. Technol. 50(1), 191–194 (2001)

    Article  Google Scholar 

  32. Joo, B.Y., Rhim, S.H., Oh, S.I.: Micro-hole fabrication by mechanical punching process. J. Mater. Process. Technol. 170, 593–601 (2005)

    Article  Google Scholar 

  33. Justinger, H.; Hirt, G.; Witulski, N.: Analysis of Cup Geometry and Temperature Conditions in the Miniaturized Deep Drawing Process. Proceedings of the 8th International Conference on Technology of Plasticity, Verona (2005) Extended Abstract 459–460 (Full Article published on CD)

    Google Scholar 

  34. Justinger, H., Hirt, G.: Scaling effects in the miniaturization of the deep drawing process. In: Vollertsen, F., Yuan, S. (eds.) International Conference on New Forming Technologies (2nd ICNFT 2007), pp. 167–176. BIAS, Bremen

    Google Scholar 

  35. Kals, R., Vollertsen, F., Geiger, M.: Scaling effects in sheet metal forming. In: Kals, H.J.J., Shirvani, B., Singh, U.P., Geiger, M. (eds.) Sheet Metal, vol. 2, pp. 65–75. University of Twente, Enschede (1996)

    Google Scholar 

  36. Kals, R.T.A.: Fundamentals on the miniaturization of sheet metal working processes. In: Geiger, M. (ed.) Reihe Fertigungstechnik—Erlangen, p. 87. Meisenbach, Bamberg (1999)

    Google Scholar 

  37. Klocke, F., König, W.: Fertigungsverfahren—Umformen. Springer, Berlin (2006)

    Google Scholar 

  38. Kolleck, R., Vollmer, R., Veit, R.: Investigation of a combined micro-forming and punching process for the realization of tight geometrical tolerances of conically formed hole patterns. CIRP Ann. Manuf. Technol. 60, 331–334 (2011)

    Article  Google Scholar 

  39. Lange, K.: Umformtechnik. Band 3: Blechbearbeitung. Springer, Berlin (1990)

    Google Scholar 

  40. Leu, D.-k., Chen, T.-C., Huang, Y.-M.: Influence of punch shape on collar-drawing process of sheet steel. J. Mater. Process. Technol. Nr. 88, 134–146 (1999)

    Google Scholar 

  41. Liu, H., Shen, Z., Wang, X., Wang, H., Tao, M.: Micromould based laser shock embossing of thin metal sheets for MEMS applications. Appl. Surf. Sci. 256, 4687–4691 (2010)

    Article  Google Scholar 

  42. Liu, J.G., Fu, M.W., Lua, J., Chan, W.L.: Influence of size effect on the spring back of sheet metal foils in micro-bending. Comput. Mater. Sci. 50, 2604–2614 (2011)

    Article  Google Scholar 

  43. Meschede, D.: Gerthsen Physik, p. 450. Springer, Heidelberg (2006)

    Book  Google Scholar 

  44. Montross, C.S., Wei, T., Ye, L., Clark, G., Mai, Y.-W.: Laser shock processing and its effects on microstructure and properties of metal alloys: A review. Int. J. Fatigue 24, 1021–1036 (2002)

    Article  Google Scholar 

  45. O’Keefe, J.D., Skeen, C.H., York, C.M.: Laser-induced deformation modes in thin metal targets. J. Appl. Phys. 44(10), 4622–4626 (1973)

    Article  Google Scholar 

  46. Peyre, P., Fabbro, R.: Laser shock processing: A review of the physics and applications. Opt. Quant. Electron. 27, 1213–1229 (1995)

    Google Scholar 

  47. Qin, Y., Brockett, A., Zhao, J., Razali, A., Ma, Y., Harrison, C.: in Micro-Manufacturing Engineering and Technology, Chap. 8: Forming of Micro-Sheet-Metal Components, Elsevier, 130–145 (2010)

    Google Scholar 

  48. Rhim, S.H., Son, Y.K., Oh, S.I.: Punching of ultra small size hole array. CIRP Ann. Manuf. Technol. 54(1), 261–264 (2005)

    Article  Google Scholar 

  49. Romanowski, W.P.: Handbuch der Kaltumformung. Verlag Maschinenbau, Moskau (1971)

    Google Scholar 

  50. Schmidt-Uhlig, T.: Wechselwirkung intensiver Laserstrahlung mit Metalloberflächen am Beispiel des Laser-Schock-Härtens, p. 35. Dissertation, Cuvillier, Göttingen (2000)

    Google Scholar 

  51. Schulze Niehoff, H., Vollertsen, F.: Non-thermal laser stretch-forming. Adv. Mater. Res. 68, 433–440 (2005)

    Google Scholar 

  52. Schulze Niehoff, H., Vollertsen, F.: Mechanical and Laser Micro Deep Drawing, pp. 799–806. SheMet 2007, Trans Tech Publications, CH-Zürich (2007)

    Google Scholar 

  53. Schlagau, S.: Verfahrensverbesserung beim Kragenziehen durch Überlagerung von Druckspannungen. Dissertation, TH Darmstadt (1988)

    Google Scholar 

  54. Shan, D., Wang, C., Guo, B., Wang, X.: Effect of thickness and grain size on material behavior in micro-bending. Trans. Nonferrous Met. Soc. China 19, 507–510 (2009)

    Article  Google Scholar 

  55. Spur, G., Stöferle, T. (eds.): Handbuch der Fertigungstechnik, vol. 2/3, p. 1301. Umformen und Zerteilen, Carl Hanser, München/Wien (1983)

    Google Scholar 

  56. Spur, G., Stöferle, T.: Handbuch der Fertigungstechnik—Umformen, Zerteilen. Band 2, Carl Hanser, München, Wien (1985)

    Google Scholar 

  57. Takemasu, T.; Yamasaki, S.; Miura, H.; Ozaki, T.: Development of New Piercing System for Micro-Holes by Continuous Striking of a Punch using Ultrasonic Vibration. Proceedings of the 8th International Conference on Technology of Plasticity, Verona (2005) Extended Abstract 451–452 (Full Article published on CD)

    Google Scholar 

  58. Vollertsen, F., Hu, Z.: On the drawing limit in micro deep drawing. J. Technol. Plast. 32(1/2), 1–11 (2007)

    Google Scholar 

  59. Vollertsen, F.: Effects on the deep drawing diagram in micro forming. Prod. Eng. Res. Dev. 6(1), 11–18 (2012)

    Google Scholar 

  60. Walter, D., Michalowski, A., Gauch, R., Dausinger, F.: Monitoring of the micro-drilling process by means of laser-induced shock waves. In: Vollertsen, F., Emmelmann, C., Schmidt, M., Otto, A. (eds.) Proceedings of the Fourth International WLT-Conference on Lasers in Manufacturing (LIM07), pp. 557–562. AT-Fachverlag, Stuttgart (2007)

    Google Scholar 

  61. White, R.M.: Elastic wave generation by electron bombardment or electromagnetic wave absorption. J. Appl. Phys. 34, 2123–2124 (1963)

    Article  Google Scholar 

  62. Wielage, H.: Hochgeschwindigkeitsumformen durch laserinduzierte Schockwellen, Series Strahltechnik, vol. 44. BIAS, Bremen (2011)

    Google Scholar 

  63. Wilken, R.: Das Biegen von Innenborden mit Stempeln. Dissertation, TU Hannover (1957)

    Google Scholar 

  64. Yamaguchi, K., Sagrado, R., Takakura, N., Lizuka, T.: Effect of thickness on the restoration behavior of sheet metals subjected to bulge deformation. Int. Conf. Technol. Plasticity (ICTP) 7, 997–1002 (2002)

    Google Scholar 

  65. Yi, S.M., Joo, B.Y., Park, M.S.: Mechanical punching of 15 µm size hole. Microsys. Technol. 12, 877–882 (2006)

    Article  Google Scholar 

  66. Zhang, W., Yao, Y.L., Noyan, I.C.: Microscale laser shock peening of thin films, part 1: Experiment, modeling and simulation. ASME 126, 10–17 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Frank Vollertsen , Gerrit Behrens , Hanna Wielage , Hanna Wielage , Heiko Brüning or Gerrit Behrens .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Vollertsen, F. (2013). Sheet Metal Forming. In: Vollertsen, F. (eds) Micro Metal Forming. Lecture Notes in Production Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30916-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30916-8_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30915-1

  • Online ISBN: 978-3-642-30916-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics