Skip to main content

Basic Aspects

  • Chapter
  • First Online:
Micro Metal Forming

Part of the book series: Lecture Notes in Production Engineering ((LNPE))

  • 2240 Accesses

Abstract

The term ‘size effect’ is often used when experiments with samples of different size, e.g. different sheet thicknesses in tensile tests, present non-uniform behavior. More than once in the past different behavior has been wrongly referred to as size effect.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

A:

Area (mm²)

A0 :

Initial area (mm²)

Al :

Liquid contact area (mm²)

As :

Solid contact area (mm²)

a:

Distance (mm)

b:

Width (mm)

d:

Diameter (mm)

d0 :

Initial diameter (mm)

d1 :

Major diameter after deformation (mm)

d2 :

Minor diameter after deformation (mm)

dp :

Punch diameter (mm)

E:

Modulus of elasticity (GPa)

F:

Force (N)

FBLH :

Blank holder force (N)

FE :

Electrostatic force (N)

Ffr :

Frictional force (N)

FG :

Gravitation (N)

Fn :

Normal force (N)

FvW :

Van der Waal’s force (N)

Fγ :

Force induced by surface tension (N)

h:

Height (mm)

h0 :

Initial height (mm)

k:

Yield stress in shear (MPa)

kf :

Flow stress (MPa)

kfs :

Flow stress at the surface (MPa)

kfv :

Flow stress in the volume (MPa)

l:

Length (mm)

l0 :

Original length (mm)

l1 :

Length during deformation (mm)

lG :

Grain size (mm)

lNa :

Length nakajima test

m:

Friction factor

p:

Pressure (N/mm²)

pl :

Closed pocket pressure (N/mm²)

q:

Wear rate (m³ · (Nm)−1)

s0 :

Initial material thickness (mm)

T:

Temperature (K)

t:

Time (s)

v:

Velocity (mm/s)

V:

Volume (m³)

w:

Path (mm)

Δ:

Difference (µm)

ε:

Strain

φ:

Logarithmic degree of deformation = ln(l/l0)

\(\dot{\varphi}\) :

Deformation velocity (s−1)

φ1 :

Major strain

φ2 :

Minor strain

Λ:

Scaling factor

η:

Dynamic viscosity (N s/m2)

κ:

Grain number

µ:

Friction coefficient

ν:

Kinematic viscosity (m²/s)

σ:

Normal stress (MPa)

σM :

Ultimate tensile strength (MPa)

σpl :

Yield strength (MPa)

τ:

Frictional shear stress (MPa)

τSC :

Shear stress for a single crystal (MPa)

Reference

  1. Amstrong, R.W.: On size effects in polycrystal plasticity. J. Mech. Phys. Solids 9 196–199 (1961) doi:10.1016/0022-5096(61)90018-7

  2. Behrens, B.A., Doege, E., Hundertmark, A.: Modelling of size-effects in bulk metal forming processes. Strahltechnik 24 49–56 (2003) BIAS-Verlag, Bremen

    Google Scholar 

  3. Buschhausen, A., Weinmann, K., Lee, J., Altan, T.: Evaluation of lubrication and friction in cold forging using a double backward-extrusion process. J. Mater. Process. Technol. 33, 95–108 (1992)

    Article  Google Scholar 

  4. Cao, J., Zhou, R., Wanga, Q., Xia, Z.C.: Strip-on-cylinder test apparatus for die wear characterization. CIRP Ann. Manuf. Technol. 58 251–254 (2009) Reprinted with permission from Elsevier

    Google Scholar 

  5. Czichos, H., Habig, K.H.: Tribologie Handbuch. Vieweg Wiesbaden 118 (2003) With kind permission from Springer Science and Business Media

    Google Scholar 

  6. Diehl, A., Staud, D., Engel, U.: Mechanical characterization of metal foils by hydraulic bulge test. In: Steel Research International 79, Special Edition Metal Forming Conference, Düsseldorf, Deutschland, Verlag Stahleisen GmbH, pp. 332–339 (2008)

    Google Scholar 

  7. Diehl, A., Vierzigmann, U., Engel, U.: Characterization of the mechanical behavior and the forming limits of metal foils using a pneumatic bulge test. Int. J. Mater. Form 2(1) 605–608 (2009) doi:10.1007/s12289-009-0608-4

  8. Di Lorenzo, R., Beccari, S., Micari, F.: An experimental investigation on micro sheet forming. In: Proceedings of the 1st international CIRP seminar on micro and nano technology, Copenhagen, pp. 73–76 (2003)

    Google Scholar 

  9. Engel, U.: Tribology in microforming. Wear 260, 265–273 (2006)

    Article  Google Scholar 

  10. Engel, U., Messner, A., Tiesler, N.: Cold forging of microparts—effect of miniaturization on friction. In: Chenot, J. et al. (eds.) Proceedings of the First ESAFORM Conference on Materials Forming, Sophia Antipolis, France, pp. 77–80 (1998)

    Google Scholar 

  11. Eriksen, R.S., Calaon, M., Arentoft, M., Bay, N.: Benchmarking of direct and indirect friction tests in micro forming. In: Merklein, M., Hagenah, H. (eds.) Key Engineering Materials, Material Forming ESAFORM 2012, pp. 581–586. Trans Tech Publications, Switzerland (2012)

    Google Scholar 

  12. Gau, J.-T., Principe, C., Wang, J.: An experimental study on size effects on flow stress and formability of aluminum and brass for microforming. J. Mater. Process. Technol. 184(1–3), 42–46 (2007)

    Article  Google Scholar 

  13. Geiger, M., Kleiner, M., Eckstein, R., Tiesler, N., Engel, U.: Microforming. Ann. CIRP 50 445–462 (2001)

    Google Scholar 

  14. Geiger, M., Tiesler, N., Engel, U.: Cold forging of microparts. Prod. Eng. Res. Dev. 10(1), 19–22 (2003)

    Google Scholar 

  15. Geiger, M., Messner, A., Engel, U.: Production of microparts—size effects in bulk metal forming. Similarity theory. Prod. Eng. IV/1 55–58 (1997)

    Google Scholar 

  16. Goodwin, G.,M.: Application of strain analysis to sheet metal forming problems in the press shop. Soc. Automot. Eng. 680093 380–387 (1968) doi:10.4271/680093

  17. Hasek, V.,V.: Untersuchung und theoretische Beschreibung wichtiger Einflußgrößen auf das Grenzformänderungsschaubild. Bleche Rohre Profile 25 pp. 213–220, 285–292, 493–499, 619–627 (1978)

    Google Scholar 

  18. Hoffmann, H., Hong, S.: Tensile test of very thin sheet metal and determination of flow stress considering the scaling effect. CIRP Ann. Manuf. Technol. 55 263–266 (2006)

    Google Scholar 

  19. Holleck, H., Schier, V.: Multilayer PVD coating for wear protection. Surf. Coat. Technol. 76–77, 328–336 (1995)

    Article  Google Scholar 

  20. Hu, Z., Schulze Niehoff, H., Vollertsen, F.: Determination of the friction coefficient in deep drawing. In: Vollertsen, F., Hollmann, F. (eds.) Proceeding of the 1st Colloquium of DFG Priority Program Process Scaling, BIAS Verlag, Bremen 27–34 (2003)

    Google Scholar 

  21. Hu, Z., Schulze Niehoff, H., Vollertsen, F.: Tribological size effects in deep drawing. In: Vollertsen, F., Yuan, S. (eds.) Proceeding of the 2nd International Conference on New Forming Technology, BIAS Verlag, Bremen 573–582 (2007)

    Google Scholar 

  22. Hu, Z., Vollertsen, F.: Effect of size and velocity dependent friction in deep drawing on the process window. In: Proceedings of 4th International Conference on Tribology in Manufacturing Processes (ICTMP2010), 583–592

    Google Scholar 

  23. Hu, Z., Wielage, H., Vollertsen, F.: Forming behavior of thin foils. Key Eng. Mater. 473 1008–1015 (2011) doi:10.4028/www.scientific.net/KEM.473.1008

  24. Hu, Z.; Schubnov, A., Vollertsen, F.: Tribological behaviour of DLC-films and their application in micro deep drawing. Journal of Materials processing Technology 212/3 (2012) 647–652

    Google Scholar 

  25. Justinger, H.: Experimentelle und numerische Untersuchung von Miniaturisierungseinflüssen bei Umformprozessen am Beispiel Mikro-Tiefziehen. (2009) ISBN: 9783832281526

    Google Scholar 

  26. Kajdas, C., Harvey, S.S.K., Wilusz, E.: Encyclopedia of tribology. Tribology Series 15. p 371 Elsevier Science Publishers B.V. (1990)

    Google Scholar 

  27. Keeler, S.P.: Determination of Forming Limits in Automotive Stampings. SAE Technical Paper 650535, 1965, doi:10.4271/650535

  28. Kim J., Hoffmann, H., Golle, M., Golle, R.: Untersuchungen zum Werkstoffverhalten von sehr dünnen Kupferblechen. In: Vollertsen, F. (ed.) Größeneinflüsse bei Fertigungsprozessen, BIAS-Verlag, Bremen 267–286 (2009)

    Google Scholar 

  29. Klocke, F., Maßmann, T., Gerschwiler, K.: Combination of PVD tool coatings and biodegradable lubricants in metal forming and machining. Wear 259 1197–1206 (2005) Reprinted with permission from Elsevier

    Google Scholar 

  30. Krishnan, N., Cao, J., Dohda K.: Study of the size effect on friction conditions in micro-extrusion: part 1—micro-extrusion experiments and analysis ASME J. Manuf. Sci. Eng. 129(4) 669–676 (2007)

    Google Scholar 

  31. Lange, K.: Umformtechnik. Band 1: Grundlagen, pp 240–260. Springer, Berlin, (1984)

    Google Scholar 

  32. Lim, S.C., Ashby, M.F.: Wear-mechanism maps. Acta Metall. 35 1–24 (1987) Reprinted with permission from Elsevier

    Google Scholar 

  33. Liu, J.G., Fu, M.W., Lu, J., Chan, W.L.: Influence of size effect on the spring back of sheet metal foils in micro-bending. Comput. Mater. Sci. 50(9), 2604–2614 (2011) doi:10.1016/j.commatsci.2011.04.002

    Google Scholar 

  34. Manika, I., Maniks, J.: Size effects in micro- and nanoscale indentation. Acta Mater. 54(8), 2049–2056 (2006)

    Article  Google Scholar 

  35. Messner, A., Engel, R., Kals, R., Vollertsen, F.: Size effect in the FE-simulation of micro-forming processes. J. Mater. Process. Technol. 45, 371–376 (1994)

    Article  Google Scholar 

  36. Meßner, A.: Kaltmassivumformen metallischer Kleinstteile—Werkstoffverhalten, Wirkflächenreibung, Prozeßauslegung, Dissertation, Meisenbach Verlag Bamberg (1998)

    Google Scholar 

  37. Nielsen, P.S., Paldan, N.A., Calaon, M., Bay, N.: Direct testing of scale effects in metal forming friction and lubrication. In: Felder, E., Montmitonnet, P. (eds.) Proceedings of the International Conference on Tribology in Manufacturing Processes (ICTMP 2010), 497–506 (2010)

    Google Scholar 

  38. Pawelski, O.: Ähnlichkeitstheorie in der Umformtechnik. In Dahl, W., Kopp, R., Pawelski, O., Pankert, R. (eds.) Umformtechnik Plastomechanik und Werkstoffkunde, pp. 158–176. Verlag Stahleisen (1993)

    Google Scholar 

  39. Podra, P., Andersson, S.: Simulating sliding wear with finite element method. Tribol. Int. 32 71–81 (1999) Reprinted with permission from Elsevier

    Google Scholar 

  40. Raulea, L.V., Goijaets, A.M., Govaert, L.E., Baaijens, F.P.T.: Size effects in the processing of thin metal sheets. In: Proceedings of the SheMet′99, 521–528 (1999)

    Google Scholar 

  41. Shaw, M.C.: Dimensional analysis for wear systems. Wear 43, 263–266 (1977)

    Article  Google Scholar 

  42. Shimizu, T., Iwaoka, S., Yang, M., Manabe, K.: Scale dependence of dry friction in micro sheet metal forming. In: Hirt, G., Tekkaya, A. (eds.) 10th International Conference on Technology of Plasticity (ICTP2011), pp. 979–984. Wiley-VCH Verlag GmbH & Co KGaA, Weinheim (2011)

    Google Scholar 

  43. Sikorski, M.E.: Correlation of the coefficient of adhesion with various physical and mechanical properties of metals. Trans. ASME Ser. D J. Basic Eng. 85, 279–285 (1963)

    Article  Google Scholar 

  44. Stolarski, A.: Tribology in machine design, p. 19. Butterworth-Heinemann, Oxford (1990)

    Google Scholar 

  45. Tiesler, N.: Microforming—size effects in friction and their influence on extrusion processes. Wire 52, 34–38 (2002)

    Google Scholar 

  46. Tiesler, N., Engel, U., Geiger, M.: Forming of microparts—effects of miniaturization on friction. Adv. Technol. Plast. 2, 889–894 (1999)

    Google Scholar 

  47. Vollertsen, F.: Metal forming: Microparts encyclopaedia of materials: Science and technology. In: Buschow, J., Kopp, R. et al. (eds.) pp. 5424–5427. Elsevier, Amsterdam (2001)

    Google Scholar 

  48. Vollertsen, F., Hu, Z.: Tribological size effects in sheet metal forming measured by a strip drawing test. Ann. CIRP 55, 291–294 (2009)

    Article  Google Scholar 

  49. Vollertsen, F., Hu, Z.: On the drawing limit in micro deep drawing. J. Technol. Plast. 1–2(32), 1–11 (2007)

    Google Scholar 

  50. Vollertsen, F.: Categories of size effects. Prod. Eng. Res. Dev. 2(4), 377–383 (2008)

    Article  Google Scholar 

  51. Vollertsen, F., Biermann, D., Hansen, H.N., Jawahir, I.S., Kuzman, K.: Size effects in manufacturing of metallic components. CIRP Ann. 58(2), 566–587 (2009)

    Article  Google Scholar 

  52. Vollertsen, F. et al. Fracture limits of metal foils in micro forming. In: Proceedings of the 36th International MATADOR Conference, 2–8 (2010) doi:10.1007/978-1-84996-432-6

  53. Vollertsen, F.: Size effects in micro forming. In: Duflou, J.R., Clarke, R., Merklein, M., Micari, F., Shirvani, B., Kellens, K. (eds.) 14th International Conference on Sheet Metal (Sheet Metal 2011), Trans Tech Publications, Zürich-Durnten 3–12 (2011)

    Google Scholar 

  54. Weidel, S., Engel, U., Merklein, M., Geiger, M.: Basic investigations on boundary lubrication in metal forming processes by in situ observation of the real contact area. Prod. Eng. Res. Dev. 4 107–114 (2010) With kind permission from Springer Science and Business Media

    Google Scholar 

  55. Wielage, H., Vollertsen, F.: Investigations of forming behavior in laser shock deep drawing. Steel Res. Int. 80, 323–328 (2009). doi:10.2374/SRI08SP148

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Frank Vollertsen , Frank Vollertsen , Gerrit Behrens , Timo Kühnle or Hendrik Flosky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Vollertsen, F. (2013). Basic Aspects. In: Vollertsen, F. (eds) Micro Metal Forming. Lecture Notes in Production Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30916-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30916-8_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30915-1

  • Online ISBN: 978-3-642-30916-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics