Skip to main content

Further Developments in IDIS Model

  • Chapter
  • First Online:
  • 832 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

All electronic circuits that rely on the use of semiconductors (the vast majority in the last 50 years) need to deal with a physical challenging system: metal/semiconductor interfaces. Its technological importance led to an extensive research and nowadays, the properties of interfaces between metal and inorganic semiconductors are well understood (band bending, interface states, Bardeen model, IDIS model...). A small review of inorganic interfaces will be given in Sect. 3.2

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Flat band can be achieved applying enough bias to the semiconductor so that the depletion region disappear. An study of the barrier height without considering band flat situation can be found in ([21], Sects. 1.4.3 and 1.4.4).

  2. 2.

    See for example J. D. Jackson Classical Electrodynamics (3rd Ed.), Sect. 1.6

References

  1. W.R. Salanek, S. Stafstrom, J.L. Bredas, Conjugated Polymer Surfaces and Interfaces: Electronic and Chemical Structure of Interfaces for Polymer Light Emitting Diodes. (Cambridge University Press, Cambridge, 1996)

    Google Scholar 

  2. H. Ishii, K. Sugiyama, E. Ito, K. Seki, Energy level alignment and interfacial electronic structures at organic/metal and organic/organic interfaces. Adv. Mater. 11(8), 605 (1999)

    Article  Google Scholar 

  3. W.R. Salaneck, K. Seki, A. Kahn, J.J. Piraeux (eds.), Conjugated Polymer and Molecular Interfaces (Dekker, New York, 2002)

    Google Scholar 

  4. F. Flores, J. Ortega, H. Vázquez, Modelling energy level alignment at organic interfaces and density functional theory. Phys. Chem. Chem. Phys. 11(39), 8658 (2009)

    Article  Google Scholar 

  5. P. Samori, F. Cacialli (ed.), Functional Supramolecular Architectures: For Organic Electronics and Nanotechnology (Wileyi-Vch, Weinheim, 2010)

    Google Scholar 

  6. S. Narioka, H. Ishii, D. Yoshimura, M. Sei, Y. Ouchi, K. Seki, S. Hasegawa, T. Miyazaki, Y. Harima, K. Yamashita, The electronic structure and energy level alignment of porphyrin/metal interfaces studied by ultraviolet photoelectron spectroscopy. Appl. Phys. Lett. 67(13), 1899 (1995)

    Article  ADS  Google Scholar 

  7. I.G. Hill, A. Rajagopal, A. Kahn, Y. Hu, Molecular level alignment at organic semiconductor-metal interfaces. Appl. Phys. Lett. 73(5), 662 (1998)

    Article  ADS  Google Scholar 

  8. H. Ishii, K. Sugiyama, D. Yoshimura, E. Ito, Y. Ouchi, K. Seki, Energy-level alignment at model interfaces of organic electroluminescent devices studied by UV photoemission: trend in the deviation from the traditional way of estimating the interfacial electronic structures. IEEE J. Sel. Top. Quantum Electron. 4(1), 24 (1998)

    Article  Google Scholar 

  9. D. Yoshimura, T. Yokoyama, E. Ito, H. Ishii, Y. Ouchi, S. Hasegawa, K. Seki, Electronic structures of Alq3/LiF/Al interfaces studied by UV photoemission. Synth. Met. 1102, 1145 (1999)

    Article  Google Scholar 

  10. M. Knupfer, G. Paasch, Origin of the interface dipole at interfaces between undoped organic semiconductors and metals. J. Vac. Sci. Technol. A 23(4), 1072 (2005)

    Google Scholar 

  11. S. Yanagisawa, Y. Morikawa, Theoretical investigation of the electronic structure of the Alq3/ Mg interface. J. Phys. Condens. Matter 21(6), 64247 (2009)

    Article  Google Scholar 

  12. X. Crispin, V. Geskin, A. Crispin, J. Cornil, R. Lazzaroni, W.R. Salaneck, J.-L. Brédas, Characterization of the interface dipole at organic/metal interfaces. J. Am. Chem. Soc. 124(27), 8131 (2002)

    Google Scholar 

  13. P. Bagus, V. Staemmler, C. Wöll, Exchangelike effects for closed-shell adsorbates: interface dipole and work function. Phys. Rev. Lett. 89(9), 96104 (2002)

    Article  ADS  Google Scholar 

  14. G. Witte, S. Lukas, P.S. Bagus, C. Wöll, Vacuum level alignment at organic/metal junctions: "Cushion"effect and the interface dipole. Appl. Phys. Lett. 87(26), 263502 (2005)

    Article  ADS  Google Scholar 

  15. H. Vázquez, Y.J. Dappe, J. Ortega, F. Flores, Energy level alignment at metal/organic semiconductor interfaces: "pillow" effect, induced density of interface states, and charge neutrality level. J. Chem. Phys. 126(14), 144703 (2007)

    Article  ADS  Google Scholar 

  16. H. Vázquez, Energy level alignment at organic semiconductor interfaces. Ph.D. thesis, Universidad Autónoma de Madrid, 2006

    Google Scholar 

  17. H. Vázquez, R. Oszwaldowski, P. Pou, J. Ortega, R. Pérez, F. Flores, A. Kahn, Dipole formation at metal/PTCDA interfaces: role of the charge neutrality level. Europhys. Lett. 65(6), 802 (2004)

    Article  ADS  Google Scholar 

  18. H. Vázquez, F. Flores, R. Oszwaldowski, J. Ortega, R. Pérez, A. Kahn, Barrier formation at metal-organic interfaces: dipole formation and the charge neutrality level. Appl. Surf. Sci. 234(1–4), 107 (2004)

    Google Scholar 

  19. A. Schuster, On unilateral conductivity. Philos. Mag. 48(4), 251 (1874)

    MathSciNet  Google Scholar 

  20. M.C. Desjonquères, D. Spanjaard, Concepts in Surface Physics. (Springer, Berlin, 1996)

    Google Scholar 

  21. E.H. Rhoderick, R.H. Williams, Metal-Semiconductor Contacts. (Oxford Univesity Press, Oxford, 1988)

    Google Scholar 

  22. N.F. Mott, Note on the contact between a metal and an insulator or semi-conductor. Math. Proc. Camb. Philos. Soc. 34(4), 568 (1938)

    Article  ADS  Google Scholar 

  23. J. Bardeen, Surface states and rectification at a metal semi-conductor contact. Phys. Rev. 71(10), 717 (1947)

    Article  MathSciNet  ADS  Google Scholar 

  24. A.M. Cowley, S.M. Sze, Surface states and barrier height of metal-semiconductor systems. J. Appl. Phys. 36(10), 3212 (1965)

    Article  ADS  Google Scholar 

  25. V. Heine, Theory of surface states. Phys. Rev. 138(6A), A1689 (1965)

    Google Scholar 

  26. J. Phillips, Elementary excitations at metal-semiconductor interfaces. Phys. Rev. B 1(2), 593 (1970)

    Article  ADS  Google Scholar 

  27. E. Louis, F. Yndurain, F. Flores, Metal-semiconductor junction for (110) surfaces of zinc-blende compounds. Phys. Rev. B 13(10), 4408 (1976)

    Article  ADS  Google Scholar 

  28. C. Tejedor, F. Flores, E. Louis, The metal-semiconductor interface: Si (111) and zincblende (110) junctions. J. Phys. C Solid State Phys. 10, 2163 (1977)

    Article  ADS  Google Scholar 

  29. S. Louie, M. Cohen, Electronic structure of a metal-semiconductor interface. Phys. Rev. B 13(6), 2461 (1976)

    Article  ADS  Google Scholar 

  30. S. Louie, J. Chelikowsky, M. Cohen, Ionicity and the theory of Schottky barriers. Phys. Rev. B 15(4), 2154 (1977)

    Article  ADS  Google Scholar 

  31. J. Ihm, S. Louie, M. Cohen, Electronic structure of Ge and diamond Schottky barriers. Phys. Rev. B 18(8), 4172 (1978)

    Article  ADS  Google Scholar 

  32. W.E. Spicer, P.W. Chye, P.R. Skeath, C.Y. Su, I. Lindau, New and unified model for Schottky barrier and III-V insulator interface states formation. J. Vac. Sci. Technol. 16(5), 1422 (1979)

    Article  ADS  Google Scholar 

  33. K. Seki, N. Hayashi, H. Oji, E. Ito, Y. Ouchi, H. Ishii, Electronic structure of organic/metal interfaces. Thin Solid Films 393(1–2), 298 (2001)

    Article  ADS  Google Scholar 

  34. E. Ito, H. Oji, H. Ishii, K. Oichi, Y. Ouchi, K. Seki, Interfacial electronic structure of long-chain alkane/metal systems studied by UV-photoelectron and metastable atom electronspectroscopies. Chem. Phys. Lett. 287(1–2), 137 (1998)

    Article  ADS  Google Scholar 

  35. M. Yamamoto, Y. Sakurai, Y. Hosoi, H. Ishii, K. Kajikawa, Y. Ouchi, K. Seki, Structures of a long-chain n-alkane, n-C44H90, on a Au(111) surface: an infrared reflection absorption spectroscopic study. J. Phys. Chem. 104, 7363 (2000)

    Google Scholar 

  36. N. Lang, Interaction between closed-shell systems and metal surfaces. Phys. Rev. Lett. 46(13), 842 (1981)

    Article  ADS  Google Scholar 

  37. N. Lang, A. Williams, Theory of local-work-function determination by photoemission from rare-gas adsorbates. Phys. Rev. B 25(4), 2940 (1982)

    Article  ADS  Google Scholar 

  38. Y. Chen, J. Cunningham, C. Flynn, Dependence of rare-gas-adsorbate dipole moment on substrate work function. Phys. Rev. B 30(12), 7317 (1984)

    Article  ADS  Google Scholar 

  39. Y. Hirose, A. Kahn, V. Aristov, P. Soukiassian, V. Bulovic, S. Forrest, Chemistry and electronic properties of metal-organic semiconductor interfaces: Al, Ti, In, Sn, Ag, and Au on PTCDA. Phys. Rev. B 54(19), 13748 (1996)

    Article  ADS  Google Scholar 

  40. H. Oji, E. Ito, M. Furuta, H. Ishii, Y. Ouchi, K. Seki, Metal-on-p-sexiphenyl films studied by electron spectroscopies. Synth. Met. 121, 1721 (2001)

    Article  Google Scholar 

  41. M. Fahlman, A. Crispin, X. Crispin, S.K.M. Henze, M.P.D. Jong, W. Osikowicz, C. Tengstedt, W.R. Salaneck, Electronic structure of hybrid interfaces for polymer-based electronics. J. Phys. Condens. Matter 19(18), 183202 (2007)

    Article  ADS  Google Scholar 

  42. P.S. Davids, A. Saxena, D.L. Smith, Nondegenerate continuum model for polymer light-emitting diodes. J. Appl. Phys. 78(6), 4244 (1995)

    Article  ADS  Google Scholar 

  43. P. Davids, A. Saxena, D. Smith, Bipolaron lattice formation at metal-polymer interfaces. Phys. Rev. B 53(8), 4823 (1996)

    Article  ADS  Google Scholar 

  44. I. Campbell, T. Hagler, D. Smith, J. Ferraris, Direct measurement of conjugated polymer electronic excitation energies using metal/polymer/metal structures. Phys. Rev. Lett. 76(11), 1900 (1996)

    Article  ADS  Google Scholar 

  45. W. Osikowicz, M.P. de Jong, S. Braun, C. Tengstedt, M. Fahlman, W.R. Salaneck, Energetics at Au top and bottom contacts on conjugated polymers. Appl. Phys. Lett. 88(19), 193504 (2006)

    Article  ADS  Google Scholar 

  46. F. Flores, C. Tejedor, Energy barriers and interface states at heterojunctions. J. Phys. C Solid State Phys. 12, 731 (1979)

    Article  ADS  Google Scholar 

  47. I.G. Hill, J. Schwartz, A. Kahn, Metal-dependent charge transfer and chemical interaction at interfaces between 3,4,9,10-perylenetetracarboxylic bisimidazole and gold, silver and magnesium. Org. Electron. 1(1), 5 (2000)

    Article  Google Scholar 

  48. A. Zangwill, Physics at Surfaces. (Cambridge University Press, Cambridge, 1988)

    Google Scholar 

  49. D. Newns, Self-consistent model of hydrogen chemisorption. Phys. Rev. 178(3), 1123 (1969)

    Article  ADS  Google Scholar 

  50. X. Crispin, Interface dipole at organic/metal interfaces and organic solar cells. Sol. Energy Mater. Sol. Cells 83(2–3), 147 (2004)

    Google Scholar 

  51. E. Abad, J. Ortega, F. Flores, Metal/organic barrier formation for a C60/Au interface: from the molecular to the monolayer limit. Phys. Status Solidi. A. 209, 636 (2012)

    Google Scholar 

  52. E. Abad, Y.J. Dappe, J.I. Martínez, F. Flores, J. Ortega, C6H6/Au(111): interface dipoles, band alignment, charging energy, and van der Waals interaction. J. Chem. Phys. 134(4), 044701 (2011)

    Article  ADS  Google Scholar 

  53. E. Abad, J. Ortega, Y.J. Dappe, F. Flores, Dipoles and band alignment for benzene/Au(111) and C60/Au(111) interfaces. Appl. Phys. A 95(1), 119 (2009)

    Article  ADS  Google Scholar 

  54. J.O. Bockris, B.E. Conway, E. Yeager (eds.), Comprehensive Treatise of Electrochemistry, vol. 1. (Plenum Press, New York, 1980)

    Google Scholar 

  55. M. Fujihira, Photoinduced electron transfer and energy transfer in Langmuir–Blodgett films. Adv. Chem. Ser. 240, 373 (1994)

    Article  Google Scholar 

  56. E. Abad, J. Ortega, F. Flores, Density functional theory calculations and the induced density of interface states model for noble metals/C60 interfaces. J. Vac. Sci. Technol. B 27(4), 2008 (2009)

    Google Scholar 

  57. L.-L. Wang, H.-P. Cheng, Density functional study of the adsorption of a C60 monolayer on Ag(111) and Au(111) surfaces. Phys. Rev. B 69(16), 165417 (2004)

    Article  ADS  Google Scholar 

  58. L.-L. Wang, H.-P. Cheng, Rotation, translation, charge transfer, and electronic structure of C60 on Cu(111) surface. Phys. Rev. B 69(4), 45404 (2004)

    Article  ADS  Google Scholar 

  59. J. Sau, J. Neaton, H. Choi, S. Louie, M. Cohen, Electronic energy levels of weakly coupled nanostructures: C60-metal interfaces. Phys. Rev. Lett. 101(2), 26804 (2008)

    Article  ADS  Google Scholar 

  60. K. Toyoda, Y. Nakano, I. Hamada, K. Lee, S. Yanagisawa, Y. Morikawa, First-principles study of benzene on noble metal surfaces: adsorption states and vacuum level shifts. Surf. Sci. 603(18), 2912 (2009)

    Article  ADS  Google Scholar 

  61. C.-T. Tzeng, W.-S. Lo, J.-Y. Yuh, R.-Y. Chu, K.-D. Tsuei, Photoemission, near-edge X-ray-absorption spectroscopy, and low-energy electron-diffraction study of C60 on Au(111) surfaces. Phys. Rev. B 61(3), 2263 (2000)

    Article  ADS  Google Scholar 

  62. Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/

  63. P. Han, B.A. Mantooth, E.C.H. Sykes, Z.J. Donhauser, P.S. Weiss, Benzene on Au[111] at 4 K: monolayer growth and tip-induced molecular cascades. J. Am. Chem. Soc. 126(34), 10787 (2004)

    Article  Google Scholar 

  64. N. Koch, A. Gerlach, S. Duhm, H. Glowatzki, G. Heimel, A. Vollmer, Y. Sakamoto, T. Suzuki, J. Zegenhagen, J.P. Rabe, F. Schreiber, Adsorption-induced intramolecular dipole: correlating molecular conformation and interface electronic structure. J. Am. Chem. Soc. 130(23), 7300 (2008)

    Article  Google Scholar 

  65. S. Duhm, A. Gerlach, I. Salzmann, B. Bröker, R. Johnson, F. Schreiber, N. Koch, PTCDA on Au(111), Ag(111) and Cu(111): correlation of interface charge transfer to bonding distance. Org. Electron. 9(1), 111 (2008)

    Google Scholar 

  66. M. Basanta, Y. Dappe, P. Jelínek, J. Ortega, Optimized atomic-like orbitals for first-principles tight-binding molecular dynamics. Comput. Mater. Sci. 39(4), 759 (2007)

    Article  Google Scholar 

  67. J. Pliva, J. Johns, L. Goodman, Infrared bands of isotopic benzenes: \(\nu \)13 and \(\nu \)14 of 13C6D6. J. Mol. Spectrosc. 148(2), 427 (1991)

    Article  ADS  Google Scholar 

  68. C.S. Yannoni, P.P. Bernier, D.S. Bethune, G. Meijer, J.R. Salem, NMR determination of the bond lengths in C60. J. Am. Chem. Soc. 113(8), 3190 (1991)

    Article  Google Scholar 

  69. A. Maeland, T. Flanagan, Lattice spacings of gold-palladium alloys. Can. J. Phys. 42(11), 2364 (1964)

    Article  ADS  Google Scholar 

  70. F. Ample, C. Joachim, A semi-empirical study of polyacene molecules adsorbed on a Cu(110) surface. Surf. Sci. 600(16), 3243 (2006)

    Article  ADS  Google Scholar 

  71. J.M. Garcia-Lastra, C. Rostgaard, A. Rubio, K.S. Thygesen, Polarization-induced renormalization of molecular levels at metallic and semiconducting surfaces. Phys. Rev. B 80(24), 245427 (2009)

    Article  ADS  Google Scholar 

  72. X. Lu, M. Grobis, K. Khoo, S. Louie, M. Crommie, Charge transfer and screening in individual C60 molecules on metal substrates: A scanning tunneling spectroscopy and theoretical study. Phys. Rev. B 70(11), 115418 (2004)

    Article  ADS  Google Scholar 

  73. J.P. Perdew, M. Levy, J.L. Balduz, Density-functional theory for fractional particle number: derivative discontinuities of the energy. Phys. Rev. Lett. 49(23), 1691 (1982)

    Article  ADS  Google Scholar 

  74. P. Mori-Sánchez, A. Cohen, W. Yang, Localization and delocalization errors in density functional theory and implications for band-gap prediction. Phys. Rev. Lett. 100(14), 146401 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrique Abad .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Abad, E. (2013). Further Developments in IDIS Model. In: Energy Level Alignment and Electron Transport Through Metal/Organic Contacts. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30907-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30907-6_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30906-9

  • Online ISBN: 978-3-642-30907-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics