Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 839 Accesses

Abstract

Ab initio calculation of the electronic structure of molecules and solids have became one of the most important tools in solid state physics. These methods allow us to predict some properties (crystal structure, density, molecular geometry, adsorption and cohesive energies, among others) of condensed matter systems without need of any empirical parameters. By this way we can understand and calculate some properties of the systems that are very difficult or even impossible to measure experimentally. We can also gain insight in the origin of some effects that cannot be explained only with experimental data (such as conductance quantization in nanowires, or the origin of the dipole at metal/organic junctions). However, the price to pay is that a lot of computational effort is needed, compared with empirical or semi-empirical models. In order to reduce the computational time, a lot of approximations have been done in order to get the best accuracy/resources ratio. This chapter will guide through the state-of-the-art ab initio techniques necessary (some of them developed during this work) to successfully simulate the systems that have been studied during this thesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    An excellent introduction of this theory, with some practical examples can be found in [5], Chap. XI.

  2. 2.

    See, for example, [56], Sect. 4.7

References

  1. I. Levine, Quantum Chemistry, (Prentice Hall, New Jersey, 2001)

    Google Scholar 

  2. K. Ohno, K. Esfarjani, M.C. Holthausen, Computational Materials Science, (Springer, Berlin, 1999)

    Google Scholar 

  3. W. Koch, M.C. Holthausen, A Chemist’s Guide to Density Functional Theory, (Wiley-Vch, Weinheim, 2000)

    Google Scholar 

  4. L. Pauling, E.B. Wilson, Introduction to Quatum Mechanics, (McGraw-Hill, New York, 1935)

    Google Scholar 

  5. C. Cohen-Tannoudji, B. Diu, F. Laloë, Quantum Mechanics, vol. 2, 2nd edn. (Wiley, New York, 1977)

    Google Scholar 

  6. A. Szabo, N.S. Ostlund, Modern Quantum Chemistry, (Dover Publications, New York, 1996)

    Google Scholar 

  7. C. Møller, M.S. Plesset, Note on an approximation treatment for many-electron systems. Phys. Rev. 46(7), 618 (1934)

    Article  ADS  MATH  Google Scholar 

  8. J. Phillips, Energy-band interpolation scheme based on a pseudopotential. Phys. Rev. 112, 685 (1958)

    Article  ADS  Google Scholar 

  9. M. Cohen, V. Heine, The fitting of pseudopotentials to experimental data and their subsequent application. Solid state phys. 24, 37 (1970)

    Article  Google Scholar 

  10. J. Joannopoulos, T. Starkloff, M. Kastner, Theory of pressure dependence of the density of states and reflectivity of Selenium. Phys. Rev. Lett. 38(12), 660 (1977)

    Article  ADS  Google Scholar 

  11. A. Redondo, W.A. Goddard, T.C. McGill, Ab initio effective potentials for silicon. Phys. Rev. B 15, 5038 (1977)

    Article  ADS  Google Scholar 

  12. D. Hamann, M. Schlüter, C. Chiang, Norm-conserving pseudopotentials. Phys. Rev. Lett. 43(20), 1494 (1979)

    Article  ADS  Google Scholar 

  13. A. Zunger, M. Cohen, First principles nonlocal-pseudopotential approach in the density-functional formalism. II. Application to electronic and structural properties of solids. Phys. Rev. B 20, 4082 (1979)

    Article  ADS  Google Scholar 

  14. L. Kleinman, D. Bylander, Efficacious form for model pseudopotentials. Phys. Rev. Lett. 48(20), 1425 (1982)

    Article  ADS  Google Scholar 

  15. E. Shirley, D. Allan, R. Martin, J. Joannopoulos, Extended norm-consrving pseudopotentials. Phys. Rev. B 40, 3652 (1989)

    Article  ADS  Google Scholar 

  16. D. Vanderbilt, Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 41, 7892 (1990)

    Article  ADS  Google Scholar 

  17. K. Laasonen, R. Car, C. Lee, D. Vanderbilt, Implementation of ultrasoft pseudopotentials in ab initio molecular dynamics. Phys. Rev. B 43, 6796 (1991)

    Article  ADS  Google Scholar 

  18. P. Hohenberg, W. Kohn, Inhomogeneous electron gas. Phys. Rev. 136(3B), B864 (1964)

    Google Scholar 

  19. W. Kohn, L. Sham, Self-consistent equations including exchange and correlation effects. Phys. Rev. 140(4A), A1133 (1965)

    Google Scholar 

  20. F.J. García-Vidal, F. Flores, S.G. Davison, Propagator theory of quantum-wire transmission. Prog. Surf. Sci. 74(1–8), 177 (2003)

    Article  ADS  Google Scholar 

  21. A.L. Fetter, J. D. Walecka, Quantum Theory of Many-Particle Systems, (Dover Publications, New York, 2003)

    Google Scholar 

  22. H. Bruus, K. Flensberg. Many-Body Quantum Theory in Condensed Matter Physics: An Introduction, (Oxford Univesity Press, New York, 2004)

    Google Scholar 

  23. J.P. Perdew, A. Zunger, Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B 23(10), 5048 (1981)

    Article  ADS  Google Scholar 

  24. D. Ceperley, B. Alder, Ground state of the electron gas by a stochastic method. Phys. Rev. Lett. 45(7), 566 (1980)

    Article  ADS  Google Scholar 

  25. A.D. Becke, Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 38(6), 3098 (1988)

    Article  ADS  Google Scholar 

  26. C. Lee, W. Yang, R.G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37(2), 785 (1988)

    Article  ADS  Google Scholar 

  27. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865 (1996)

    Article  ADS  Google Scholar 

  28. J.P. Perdew, S. Kurth, A. Zupan, P. Blaha, Accurate density functional with correct formal properties: A step beyond the generalized gradient approximation. Phys. Rev. Lett. 82(12), 2544

    Google Scholar 

  29. S. Kümmel, L. Kronik, Orbital-dependent density functionals: theory and applications. Rev. Mod. Phys. 80(1), 3 (2008)

    Article  ADS  Google Scholar 

  30. O. Sankey, D. Niklewski, Ab initio multicenter tight-binding model for molecular-dynamics simulations and other applications in covalent systems. Phys. Rev. B 40(6), 3979 (1989)

    Article  ADS  Google Scholar 

  31. A. Demkov, J. Ortega, O. Sankey, M. Grumbach, Electronic structure approach for complex silicas. Phys. Rev. B 52(3), 1618 (1995)

    Article  ADS  Google Scholar 

  32. J. Harris, Simplified method for calculating the energy of weakly interacting fragments. Phys. Rev. B 31(4), 1770 (1985)

    Article  ADS  Google Scholar 

  33. W. Foulkes, R. Haydock, Tight-binding models and density-functional theory. Phys. Rev. B 39(17), 12520 (1989)

    Article  ADS  Google Scholar 

  34. J. Lewis, K. Glaesemann, G. Voth, J. Fritsch, A. Demkov, J. Ortega, O. Sankey, Further developments in the local-orbital density-functional-theory tight-binding method. Phys. Rev. B 64(19), 195103 (2001)

    Article  ADS  Google Scholar 

  35. J.P. Lewis, P. Jelínek, J. Ortega, A.A. Demkov, D.G. Trabada, B. Haycock, H. Wang, G. Adams, J.K. Tomfohr, E. Abad, H. Wang, D.A. Drabold, Advances and applications in the FIREBALLab initio tight-binding molecular-dynamics formalism. physica status solidi b, 248(9), 1989 (2011)

    Google Scholar 

  36. J. Ortega, First-principles methods for tight-binding molecular dynamics. Comput. Mater. Sci. 12(3), 192 (1998)

    Article  Google Scholar 

  37. B. Pieczyrak, C. González, P. Jelínek, R. Pérez, J. Ortega, F. Flores, Mechanical and electrical properties of stretched clean and H-contaminated Pd-nanowires. Nanotechnology 19(33), 335711 (2008)

    Article  Google Scholar 

  38. M. Basanta, Y. Dappe, P. Jelínek, J. Ortega, Optimized atomic-like orbitals for first-principles tight-binding molecular dynamics. Comput. Mater. Sci. 39(4), 759 (2007)

    Article  Google Scholar 

  39. D.A. Papaconstantopoulos, Handbook of the Band Structure of Elemental Solids, (Plenum Press, New York, 1986)

    Google Scholar 

  40. P. Löwdin, On the non-orthogonality problem connected with the use of atomic wave fucntions in the theory of molecules and crystals. J. Chem. Phys. 18, 365 (1950)

    Article  ADS  Google Scholar 

  41. B. Carlson, J. Keller, Orthogonalization procedures and the localization of wannier functions. Phys. Rev. 105(1), 102 (1957)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  42. A. Horsfield, Efficient ab initio tight binding. Phys. Rev. B 56(11), 6594 (1997)

    Article  ADS  Google Scholar 

  43. P. Jelínek, H. Wang, J. Lewis, O. Sankey, J. Ortega, Multicenter approach to the exchange-correlation interactions in ab initio tight-binding methods. Phys. Rev. B 71(23), 235101 (2005)

    Article  ADS  Google Scholar 

  44. D. González. Efectos dinámicos en la superficie \(\beta\)-SiC(100), Ph.D. thesis, Universidad Autonoma de Madrid, 2009

    Google Scholar 

  45. H. Hellmann, Einfuhrung in die Quantumchemie, (Franz Deutsche, Leipzig, 1937)

    Google Scholar 

  46. R. Feynman, Forces in molecules. Phys. Rev. 56(4), 340 (1939)

    Article  ADS  MATH  Google Scholar 

  47. B.M. Deb, The force concept in chemistry. Rev. Mod. Phys. 45(1), 22 (1973)

    Article  MathSciNet  ADS  Google Scholar 

  48. P.E. Gill, W. Murray, M.H. Wright, Practical Optimization (Academic Press, London, 1981)

    MATH  Google Scholar 

  49. C. González, Métodos DFT y STM de primeros principios para el estudio de superficies semiconductoras con adsorbatos: pasivación, nanohilos y transiciones de fase, Ph.D. thesis, Universidad Autónoma de Madrid, 2005

    Google Scholar 

  50. P. Fulde, Electron Correlations in Molecules and Solids, 3rd edn. (Springer, Berlin, 2003)

    Google Scholar 

  51. F.J. García-Vidal, J. Merino, R. Pérez, R. Rincón, J. Ortega, F. Flores, Density-functional approach to LCAO methods. Phys. Rev. B 50, 10537 (1994)

    Article  ADS  Google Scholar 

  52. P. Pou, Energía de canje y correlación como función de los números de ocupación orbitales: cálculos de energías totales y cuasiparticulas, Ph.D. thesis, Universidad Autónoma de Madrid, 2001

    Google Scholar 

  53. P. Pou, R. Pérez, F. Flores, A. Yeyati, A. Martin-Rodero, J. Blanco, F. García-Vidal, J. Ortega, Local-density approach and quasiparticle levels for generalized Hubbard Hamiltonians. Phys. Rev. B 62(7), 4309 (2000)

    Article  ADS  Google Scholar 

  54. H. Vázquez, Energy level alignment at organic semiconductor interfaces, Ph.D. thesis, Universidad Autónoma de Madrid, 2006

    Google Scholar 

  55. K. Schönhammer, O. Gunnarsson, R. Noack, Density-functional theory on a lattice: comparison with exact numerical results for a model with strongly correlated electrons. Phys. Rev. B 52(4), 2504 (1995)

    Article  ADS  Google Scholar 

  56. R.D. Mattuck. A Guide to Feynman Diagrams in the Many-Body Problem, Dover Publications, New York, 1992

    Google Scholar 

  57. C. Caroli, R. Combescot, P. Nozieres, D. Saint-James, A direct calculation of the tunnelling current: IV. Electron-phonon interaction effects. J. Phys. C: Solid State Phys. 4, 916 (1972)

    Article  ADS  Google Scholar 

  58. A. Martín-Rodero, F. Flores, N. March, Tight-binding theory of tunneling current with chemisorbed species. Phys. Rev. B 38(14), 10047 (1988)

    Article  ADS  Google Scholar 

  59. N. Mingo, L. Jurczyszyn, F.J. Garcia-Vidal, R. Saiz-Pardo, P. de Andres, F. Flores, S. Wu, W. More, Theory of the scanning tunneling microscope: Xe on Ni and Al. Phys. Rev. B 54(3), 2225 (1996)

    Article  ADS  Google Scholar 

  60. R. Landauer, Electrical resistance of disordered one-dimensional lattices. Philos. Mag. 21, 863 (1970)

    Article  ADS  Google Scholar 

  61. D. Fisher, P. Lee, Relation between conductivity and transmission matrix. Phys. Rev. B 23(12), 6851 (1981)

    Article  MathSciNet  ADS  Google Scholar 

  62. E. Abad, Y.J. Dappe, J.I. Martínez, F. Flores, J. Ortega, C6H6/Au(111): interface dipoles, band alignment, charging energy, and van der Waals interaction. J. Chem. Phys. 134(4), 044701 (2011)

    Article  ADS  Google Scholar 

  63. J. Ángyán, I. Gerber, A. Savin, J. Toulouse, Van der Waals forces in density functional theory: perturbational long-range electron-interaction corrections. Phys. Rev. A 72(1), 12510 (2005)

    Article  Google Scholar 

  64. D.C. Langreth, M. Dion, H. Rydberg, E. Schröder, P. Hyldgaard, B.I. Lundqvist, Van der Waals density functional theory with applications. Int. J. Quantum Chem. 101(5), 599 (2005)

    Article  Google Scholar 

  65. F. Ortmann, F. Bechstedt, W. Schmidt, Semiempirical van der Waals correction to the density functional description of solids and molecular structures. Phys. Rev. B 73(20), 205101 (2006)

    Article  ADS  Google Scholar 

  66. S. Grimme, Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27(15), 1787 (2006)

    Article  Google Scholar 

  67. K. Pernal, R. Podeszwa, K. Patkowski, K. Szalewicz, Dispersionless density functional theory. Phys. Rev. Lett. 103(26), 263201 (2009)

    Article  ADS  Google Scholar 

  68. N. Marom, A. Tkatchenko, M. Scheffler, L. Kronik, Describing both dispersion interactions and electronic structure using density functional theory: the case of Metal-Phthalocyanine dimers. J. Chem. Theory Comput. 6(1), 81 (2010)

    Article  Google Scholar 

  69. M.A. Basanta, Y.J. Dappe, J. Ortega, F. Flores, Van der Waals forces in the local-orbital density functional theory. Europhys. Lett. 70(3), 355 (2005)

    Article  ADS  Google Scholar 

  70. Y. Dappe, M. Basanta, F. Flores, J. Ortega, Weak chemical interaction and van der Waals forces between graphene layers: a combined density functional and intermolecular perturbation theory approach. Phys. Rev. B 74(20), 205434 (2006)

    Article  ADS  Google Scholar 

  71. Y. Dappe, J. Ortega, F. Flores, Intermolecular interaction in density functional theory: application to carbon nanotubes and fullerenes. Phys. Rev. B 79(16), 165409 (2009)

    Article  ADS  Google Scholar 

  72. A. Tkatchenko, M. Scheffler, Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data. Phys. Rev. Lett. 102(7), 073005 (2009)

    Article  ADS  Google Scholar 

  73. E. Abad, J. Ortega, F. Flores, Metal/organic barrier formation for a C60/Au interface: from the molecular to the monolayer limit. Phys. Status Solidi A. 209, 636 (2012)

    Google Scholar 

  74. J.M. Garcia-Lastra, C. Rostgaard, A. Rubio, K.S. Thygesen, Polarization-induced renormalization of molecular levels at metallic and semiconducting surfaces. Phys. Rev. B 80(24), 245427 (2009)

    Article  ADS  Google Scholar 

  75. B. Pieczyrak, E. Abad, F. Flores, J. Ortega, Charging energy and barrier height of pentacene on Au(111): a local-orbital hybrid-functional density functional theory approach. J. Chem. Phys. 135(8), 084702 (2011)

    Article  ADS  Google Scholar 

  76. J. Harris, R. Jones, The surface energy of a bounded electron gas. J. Phys. F: Met. Phys. 4, 1170 (1974)

    Article  ADS  Google Scholar 

  77. J. Harris, Adiabatic-connection approach to Kohn-Sham theory. Phys. Rev. A 29(4), 1648 (1984)

    Article  ADS  Google Scholar 

  78. A.D. Becke, A new mixing of Hartree-Fock and local density-functional theories. J. Chem. Phys. 98(2), 1372 (1993)

    Google Scholar 

  79. T. Koopmans, Ordering of wave functions and eigenenergies to the individual electrons of an atom. Physica 1, 104 (1933)

    Article  ADS  MATH  Google Scholar 

  80. H. Vázquez, P. Jelínek, M. Brandbyge, A.P. Jauho, F. Flores, Corrections to the density-functional theory electronic spectrum: copper phthalocyanine. Appl. Phys. A 95(1), 257 (2008)

    Article  Google Scholar 

  81. R. Oszwaldowski, H. Vázquez, P. Pou, J. Ortega, R. Pérez, F. Flores, Exchange correlation energy in the orbital occupancy method: electronic structure of organic molecules. J. Phys. Condens. Matter 15(38), S2665 (2003)

    Article  ADS  Google Scholar 

  82. L. Hedin. New method for calculating the one-particle Green’s function with application to the electron-gas problem. Phys. Rev. 139(3A), A796 (1965)

    Google Scholar 

  83. W. Aulbur, L. Jönsson, J. Wilkins, Quasiparticle calculations in solids. Solid State Phys. 54, 1 (1999)

    Article  Google Scholar 

  84. D. Pines, D. Bohm, A collective description of electron interactions: II. Collective vs individual particle aspects of the interactions. Phys. Rev. 85(2), 338 (1952)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  85. D. Pines, in Elementary Excitations in Solids, (New York, W.A. Benjamin, 1961)

    Google Scholar 

  86. W. von der Linden, P. Horsch, Precise quasiparticle energies and Hartree-Fock bands of semiconductors and insulators. Phys. Rev. B 37(14), 8351 (1988)

    Article  ADS  Google Scholar 

  87. G. Engel, B. Farid, Generalized plasmon-pole model and plasmon band structures of crystals. Phys. Rev. B 47(23), 15931 (1993)

    Article  ADS  Google Scholar 

  88. V.I. Anisimov, J. Zaanen, O.K. Andersen, Band theory and Mott insulators: Hubbard U instead of Stoner I. Phys. Rev. B 44(3), 943 (1991)

    Article  ADS  Google Scholar 

  89. A.I. Liechtenstein, V.I. Anisimov, J. Zaanen, Density-functional theory and strong interactions: orbital ordering in Mott-Hubbard insulators. Phys. Rev. B 52(8), R5467 (1995)

    Article  ADS  Google Scholar 

  90. J. Janak, Proof that \(\partial E/\partial n=\varepsilon\)in density-functional theory. Phys. Rev. B 18(12), 7165 (1978)

    Google Scholar 

  91. V. Anisimov, F. Aryasetiawan, A. Lichtenstein, First-principles calculations of the electronic structure and spectra of strongly correlated systems: the LDA+ U method. J. Phys. Condens. Matter 9, 767 (1997)

    Article  ADS  Google Scholar 

  92. M. Cococcioni, S. de Gironcoli, Linear response approach to the calculation of the effective interaction parameters in the LDA+U method. Phys. Rev. B 71(3), 035105 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrique Abad .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Abad, E. (2013). Theoretical Foundation. In: Energy Level Alignment and Electron Transport Through Metal/Organic Contacts. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30907-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30907-6_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30906-9

  • Online ISBN: 978-3-642-30907-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics