Skip to main content

Microfluidic Devices for Quantifying the Role of Soluble Gradients in Early Angiogenesis

  • Chapter
  • First Online:
Mechanical and Chemical Signaling in Angiogenesis

Part of the book series: Studies in Mechanobiology, Tissue Engineering and Biomaterials ((SMTEB,volume 12))

Abstract

Early angiogenesis, as defined by endothelial polarization and directional sprouting, is regulated by gradients of soluble factors in addition to a multitude of other anisotropic cues including interstitial flow, insoluble gradients, and topography of the extracellular matrix (ECM). Adding to this complexity, other microenvironmental inputs, such as matrix density and rigidity, are known to modulate the extent to which vascular endothelial cells react to these anisotropic cues. Given this complexity, novel platforms are needed to decouple and systematically assess signals regulating early angiogenesis. To this end, we discuss a microfluidic device that achieves stable, matrix-independent soluble gradients via passive diffusion, which shields the culture chamber from shear-induced anisotropy. These devices enable direct time-lapse imaging of single cell and collective cell phenomena within both two-dimensional (2D) and three-dimensional (3D) cultures. These experimental platforms have been used to quantify the growth factor concentration requirements that induce endothelial cell chemotaxis, to identify previously unknown regulators of brain angiogenesis, to screen biomaterials for their angiogenic potential, and to investigate the navigational ability of nascent sprouts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zeng, G., et al.: Orientation of endothelial cell division is regulated by VEGF signaling during blood vessel formation. Blood 109(4), 1345–1352 (2007)

    Article  Google Scholar 

  2. MacGabhann, F., Ji, J.W., Popel, A.S.: VEGF gradients, receptor activation, and sprout guidance in resting and exercising skeletal muscle. J. Appl. Physiol. 102(2), 722–734 (2007)

    Article  Google Scholar 

  3. Abramsson, A., Lindblom, P., Betsholtz, C.: Endothelial and nonendothelial sources of PDGF-B regulate pericyte recruitment and influence vascular pattern formation in tumors. J. Clin. Invest. 112, 1142–1151 (2003)

    Google Scholar 

  4. Chen, R.R., et al.: Spatio-temporal VEGF and PDGF delivery patterns blood vessel formation and maturation. Pharm. Res. 24(2), 258–264 (2007)

    Article  Google Scholar 

  5. Dike, L.E., et al.: Geometric control of switching between growth, apoptosis, and differentiation during angiogenesis using micropatterned substrates. In Vitro Cell. Dev. Anim 35(8), 441–448 (1999)

    Article  Google Scholar 

  6. Straley, K.S., Heilshorn, S.C.: Dynamic, 3D-pattern formation within enzyme-responsive hydrogels. Adv. Mater. 21(41), 4148–4152 (2009)

    Article  Google Scholar 

  7. Dvorak, H.F., et al.: Distribution of vascular permeability factor (vascular endothelial growth factor) in tumors: concentration in tumor blood vessels. J. Exp. Med. 174(5), 1275–1278 (1991)

    Article  Google Scholar 

  8. Barkefors, I., et al.: Endothelial cell migration in stable gradients of vascular endothelial growth factor A and fibroblast growth factor 2: effects on chemotaxis and chemokinesis. J. Biol. Chem. 283(20), 13905–13912 (2008)

    Article  Google Scholar 

  9. Dye, J., et al.: Distinct patterns of microvascular endothelial cell morphology are determined by extracellular matrix composition. Endothelium-J Endoth 11(3–4), 151–167 (2004)

    Article  Google Scholar 

  10. Gospodarowicz, D., Vlodavsky, I., Savion, N.: The extracellular matrix and the control of proliferation of vascular endothelial and vascular smooth muscle cells. J. Supramol. Struct. Cell 13(3), 339–372 (1980)

    Article  Google Scholar 

  11. Nehls, V., Herrmann, R.: The configuration of fibrin clots determines capillary morphogenesis and endothelial cell migration. Microvasc. Res. 51(3), 347–364 (1996)

    Article  Google Scholar 

  12. Ruoslahti, E.: Specialization of tumour vasculature. Nat. Rev. Cancer 2(2), 83–90 (2002)

    Article  Google Scholar 

  13. Ogunshola, O.: Neuronal VEGF expression correlates with angiogenesis in postnatal developing rat brain. Dev. Brain Res. 119(1), 139–153 (2000)

    Article  Google Scholar 

  14. Laschke, M.W., Vollmar, B., Menger, M.D.: Inosculation: connecting the life-sustaining pipelines. Tissue Eng. Part B-Rev 15(4), 455–465 (2009)

    Article  Google Scholar 

  15. Tillet, E., et al.: N-cadherin deficiency impairs pericyte recruitment, and not endothelial differentiation or sprouting, in embryonic stem cell-derived angiogenesis. Exp. Cell Res. 310(2), 392–400 (2005)

    Article  Google Scholar 

  16. Boyden, S.: The chemotactic effect of mixtures of antibody and antigen on polymorphonuclear leucocytes. J. Exp. Med. 115, 453–466 (1962)

    Article  Google Scholar 

  17. Zigmond, S.H.: Orientation chamber in chemotaxis. Methods Enzymol. 162, 65–72 (1988)

    Article  Google Scholar 

  18. Zicha, D., Dunn, G.A., Brown, A.F.: A new direct-viewing chemotaxis chamber. J. Cell Sci. 99(4), 769–775 (1991)

    Google Scholar 

  19. Blow, N.: Cell migration: our protruding knowledge. Nat. Methods 4(7), 589–594 (2007)

    Article  Google Scholar 

  20. Pankov, R., et al.: A Rac switch regulates random versus directionally persistent cell migration. J. Cell Biol. 170(5), 793–802 (2005)

    Article  Google Scholar 

  21. Chen, R.R., et al.: Integrated approach to designing growth factor delivery systems. FASEB J 21(14), 3896–3903 (2007)

    Article  Google Scholar 

  22. Lin, F., Butcher, E.C.: T cell chemotaxis in a simple microfluidic device. Lab Chip 6(11), 1462–1469 (2006)

    Article  Google Scholar 

  23. Walker, G.M.: Effects of flow and diffusion on chemotaxis studies in a microfabricated gradient generator. Lab Chip 5(6), 611–618 (2005)

    Article  Google Scholar 

  24. Dertinger, S.K.W., et al.: Generation of gradients having complex shapes using microfluidic networks. Anal. Chem. 73(6), 1240–1246 (2001)

    Article  Google Scholar 

  25. Song, J.W., Munn, L.L.: Fluid forces control endothelial sprouting. Proc. Nat. Acad. Sci. U.S.A. 108(37), 15342–15347 (2011)

    Article  Google Scholar 

  26. Urbich, C.: Shear stress-induced endothelial cell migration involves integrin signaling via the fibronectin receptor subunits alpha5 and beta1. Arterioscler. Thromb. Vasc. Biol. 22(1), 69–75 (2002)

    Article  Google Scholar 

  27. Saadi, W., et al.: Generation of stable concentration gradients in 2D and 3D environments using a microfluidic ladder chamber. Biomed. Microdevices 9(5), 627–635 (2007)

    Article  MathSciNet  Google Scholar 

  28. Kim, T., Pinelis, M., Maharbiz, M.M.: Generating steep, shear-free gradients of small molecules for cell culture. Biomed. Microdevices 11(1), 65–73 (2009)

    Article  Google Scholar 

  29. Cheng, S.-Y., et al.: A hydrogel-based microfluidic device for the studies of directed cell migration. Lab Chip 7(6), 763–769 (2007)

    Article  Google Scholar 

  30. Shamloo, A., et al.: Endothelial cell polarization and chemotaxis in a microfluidic device. Lab Chip 8(8), 1292–1299 (2008)

    Article  Google Scholar 

  31. Berra, E., et al.: HIF prolyl-hydroxylase 2 is the key oxygen sensor setting low steady-state levels of HIF-1alpha in normoxia. EMBO J. 22(16), 4082–4090 (2003)

    Article  Google Scholar 

  32. Neufeld, G., et al.: Vascular endothelial growth factor (VEGF) and its receptors. FASEB J 13(1), 9–22 (1999)

    MathSciNet  Google Scholar 

  33. Helm, C.-L.E., et al.: Synergy between interstitial flow and VEGF directs capillary morphogenesis in vitro through a gradient amplification mechanism. Proc. Nat. Acad. Sci. U.S.A. 102(44), 15779–15784 (2005)

    Article  Google Scholar 

  34. Hiratsuka, S., et al.: MMP9 induction by vascular endothelial growth factor receptor-1 is involved in lung-specific metastasis. Cancer Cell 2(4), 289–300 (2002)

    Article  Google Scholar 

  35. Pepper, M.S., et al.: Vascular endothelial growth factor (VEGF) induces plasminogen activators and plasminogen activator inhibitor-1 in microvascular endothelial cells. Biochem. Biophys. Res. Commun. 181(2), 902–906 (1991)

    Article  Google Scholar 

  36. Hawinkels, L.J.A.C., et al.: VEGF release by MMP-9 mediated heparan sulphate cleavage induces colorectal cancer angiogenesis. Eur. J. Cancer 44(13), 1904–1913 (2008)

    Article  Google Scholar 

  37. Esser, S., et al.: Vascular endothelial growth factor induces VE-cadherin tyrosine phosphorylation in endothelial cells. J. Cell Sci. 111(13), 1853–1865 (1998)

    Google Scholar 

  38. Fleury, M.E., Boardman, K.C., Swartz, M.A.: Autologous morphogen gradients by subtle interstitial flow and matrix interactions. Biophys. J. 91(1), 113–121 (2006)

    Article  Google Scholar 

  39. Almqvist, N., et al.: Elasticity and adhesion force mapping reveals real-time clustering of growth factor receptors and associated changes in local cellular rheological properties. Biophys. J. 86(3), 1753–1762 (2004)

    Article  Google Scholar 

  40. Kiosses, W.B., et al.: Rac recruits high-affinity integrin alphavbeta3 to lamellipodia in endothelial cell migration. Nat. Cell Biol. 3(3), 316–320 (2001)

    Article  Google Scholar 

  41. Rousseau, S., et al.: p38 MAP kinase activation by vascular endothelial growth factor mediates actin reorganization and cell migration in human endothelial cells. Oncogene 15(18), 2169–2177 (1997)

    Article  Google Scholar 

  42. Podar, K., et al.: Caveolin-1 is required for vascular endothelial growth factor-triggered multiple myeloma cell migration and is targeted by bortezomib. Cancer Res. 64(20), 7500–7506 (2004)

    Article  Google Scholar 

  43. Caswell, P.T., Vadrevu, S., Norman, J.C.: Integrins: masters and slaves of endocytic transport. Nat. Rev. Mol. Cell Biol. 10(12), 843–853 (2009)

    Article  Google Scholar 

  44. Navarro, A., Anand-Apte, B., Parat, M.-O.: A role for caveolae in cell migration. FASEB J 18(15), 1801–1811 (2004)

    Article  Google Scholar 

  45. Gerhardt, H., et al.: VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J. Cell Biol. 161(6), 1163–1177 (2003)

    Article  Google Scholar 

  46. Pollock, A.S.: Matrix metalloproteinase 2(gelatinase A) regulates glomerular mesangial cell proliferation and differentiation. J. Biol. Chem. 271(25), 15074–15083 (1996)

    Article  Google Scholar 

  47. Iwamoto, Y., et al.: YIGSR, a synthetic laminin pentapeptide, inhibits experimental metastasis formation. Science 238(4830), 1132–1134 (1987)

    Article  Google Scholar 

  48. Suchting, S., et al.: The notch ligand delta-like 4 negatively regulates endothelial tip cell formation and vessel branching. Proc. Nat. Acad. Sci. U.S.A. 104(9), 3225–3230 (2007)

    Article  Google Scholar 

  49. Yana, I., et al.: Crosstalk between neovessels and mural cells directs the site-specific expression of MT1-MMP to endothelial tip cells. J. Cell Sci. 120(9), 1607–1614 (2007)

    Article  Google Scholar 

  50. Ausprunk, D.H., Folkman, J.: Migration and proliferation of endothelial cells in preformed and newly formed blood vessels during tumor angiogenesis. Microvasc. Res. 14(1), 53–65 (1977)

    Article  Google Scholar 

  51. Jakobsson, L., et al.: Endothelial cells dynamically compete for the tip cell position during angiogenic sprouting. Nat. Cell Biol. 12(10), 943–953 (2010)

    Article  Google Scholar 

  52. Funahashi, Y., et al.: Notch regulates the angiogenic response via induction of VEGFR-1. J. Angiogenes. Res. 2(1), 3 (2010)

    Article  Google Scholar 

  53. Krueger, J., et al.: Flt1 acts as a negative regulator of tip cell formation and branching morphogenesis in the zebrafish embryo. Development 138(10), 2111–2120 (2011)

    Article  MathSciNet  Google Scholar 

  54. Cha, Y.R., Weinstein, B.M.: Visualization and experimental analysis of blood vessel formation using transgenic zebrafish. Birth Defects Res. C 81(4), 286–296 (2007)

    Article  Google Scholar 

  55. Ruhrberg, C., Gerhardt, H.: VEGF in Development, pp. 68–78. Springer, New York (2008)

    Google Scholar 

  56. Asahara, T., et al.: Tie2 receptor ligands, angiopoietin-1 and angiopoietin-2, modulate VEGF-induced postnatal neovascularization. Circ. Res. 83(3), 233–240 (1998)

    Article  Google Scholar 

  57. Maisonpierre, P.C., et al.: Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 277(5322), 55–60 (1997)

    Article  Google Scholar 

  58. Das, A.: Angiopoietin/tek interactions regulate MMP-9 expression and retinal neovascularization. Lab. Invest. 83(11), 1637–1645 (2003)

    Article  Google Scholar 

  59. Clark, E.R.: Studies on the growth of blood-vessels in the tail of the frog larva by observation and experiment on the living animal. Am. J. Anat. 23(1), 37–88 (1918)

    Article  Google Scholar 

  60. Augustin, H.G., et al.: Control of vascular morphogenesis and homeostasis through the angiopoietin-Tie system. Nat. Rev. Mol. Cell Biol. 10(3), 165–177 (2009)

    Article  Google Scholar 

  61. Allt, G., Lawrenson, J.G.: Pericytes: cell biology and pathology. Cells Tissues Organs 169(1), 1–11 (2001)

    Article  Google Scholar 

  62. Bergers, G., Song, S.: The role of pericytes in blood-vessel formation and maintenance. Neuro-oncology 7(4), 452–464 (2005)

    Article  Google Scholar 

  63. Hellstrom, M., et al.: Role of PDGF-B and PDGFR-beta in recruitment of vascular smooth muscle cells and pericytes during embryonic blood vessel formation in the mouse. Development 126(14), 3047–3055 (1999)

    Google Scholar 

  64. Rajantie, I., et al.: Adult bone marrow-derived cells recruited during angiogenesis comprise precursors for periendothelial vascular mural cells. Blood 104(7), 2084–2086 (2004)

    Article  Google Scholar 

  65. Goldfinger, L.E., et al.: Localized alpha4 integrin phosphorylation directs shear stress-induced endothelial cell alignment. Circ. Res. 103(2), 177–185 (2008)

    Article  Google Scholar 

  66. Walker, G.M., et al.: Effects of flow and diffusion on chemotaxis studies in a microfabricated gradient generator. Lab Chip 5(6), 611–618 (2005)

    Article  Google Scholar 

  67. van Haastert, P.J.M., Postma, M.: Biased random walk by stochastic fluctuations of chemoattractant-receptor interactions at the lower limit of detection. Biophys. J. 93(5), 1787–1796 (2007)

    Article  Google Scholar 

  68. Palecek, S.P., et al.: Integrin-ligand binding properties govern cell migration speed through cell-substratum adhesiveness. Nature 385(6616), 537–540 (1997)

    Article  Google Scholar 

  69. Shamloo, A., Heilshorn, S.C.: Matrix density mediates polarization and lumen formation of endothelial sprouts in VEGF gradients. Lab Chip 10(22), 3061–3068 (2010)

    Article  Google Scholar 

  70. Shamloo A, Xu H, Heilshorn SC. Mechanisms of VEGF-induced path-finding by endothelial sprouts in biomaterials. Tissue Engineering Part A. 18:320–330

    Article  Google Scholar 

  71. Vickerman, V., et al.: Design, fabrication and implementation of a novel multi-parameter control microfluidic platform for three-dimensional cell culture and real-time imaging. Lab Chip 8(9), 1468–1477 (2008)

    Article  Google Scholar 

  72. Kuhnert, F., et al.: Essential regulation of CNS angiogenesis by the orphan G protein-coupled receptor GPR124. Science 330(6006), 985–989 (2010)

    Article  Google Scholar 

  73. Larrivée, B., et al.: Guidance of vascular development: lessons from the nervous system. Circ. Res. 104(4), 428–441 (2009)

    Article  Google Scholar 

  74. Ruvinov, E., Leor, J., Cohen, S.: The effects of controlled HGF delivery from an affinity-binding alginate biomaterial on angiogenesis and blood perfusion in a hindlimb ischemia model. Biomaterials 31(16), 4573–4582 (2010)

    Article  Google Scholar 

  75. Chu, H., et al.: Injectable fibroblast growth factor-2 coacervate for persistent angiogenesis. Proc. Nat. Acad. Sci. U.S.A. 108(33), 13444–13449 (2011)

    Article  Google Scholar 

  76. Golub, J.S., et al.: Sustained VEGF delivery via PLGA nanoparticles promotes vascular growth. Am J Physiol-Heart Circ. Physiol. 298(6), H1959–H1965 (2010)

    Article  Google Scholar 

  77. Borselli, C., et al.: Functional muscle regeneration with combined delivery of angiogenesis and myogenesis factors. Proc. Nat. Acad. Sci. U.S.A. 107(8), 3287–3292 (2010)

    Article  Google Scholar 

  78. Hao, X., et al.: Angiogenic effects of sequential release of VEGF-A165 and PDGF-BB with alginate hydrogels after myocardial infarction. Cardiovasc. Res. 75(1), 178–185 (2007)

    Article  Google Scholar 

  79. Jones, D.S., Tsai, P.-C., Cochran, J.R.: Engineering hepatocyte growth factor fragments with high stability and activity as met receptor agonists and antagonists. Proc. Nat. Acad. Sci. U.S.A. 108(32), 13035–13040 (2011)

    Article  Google Scholar 

  80. Wong Po Foo, C.T.S., et al.: Two-component protein-engineered physical hydrogels for cell encapsulation. Proc. Nat. Acad. Sci. U.S.A. 106(52), 22067–22072 (2009)

    Article  Google Scholar 

  81. Lin, C.–.C., Anseth, K.S.: Cell-cell communication mimicry with poly(ethylene glycol) hydrogels for enhancing beta-cell function. Proc. Nat. Acad. Sci. U.S.A. 108(16), 6380–6385 (2011)

    Article  Google Scholar 

  82. Straley, K.S., Heilshorn, S.C.: Dynamic, 3D-pattern formation within enzyme-responsive hydrogels. Adv. Mater. 21(41), 4148–4152 (2009)

    Article  Google Scholar 

  83. Ramjaun, A.R., Hodivala-Dilke, K.: The role of cell adhesion pathways in angiogenesis. Int. J. Biochem. Cell Biol. 41(3), 521–530 (2009)

    Article  Google Scholar 

  84. Hoffmann, J.C., West, J.L.: Three-dimensional photolithographic patterning of multiple bioactive ligands in poly (ethylene glycol) hydrogels. Soft Matter 6(20), 5056 (2010)

    Article  Google Scholar 

  85. Ifkovits, J.L., Sundararaghavan, H.G., Burdick, J.A.: Electrospinning fibrous polymer scaffolds for tissue engineering and cell culture. J. Vis. Exp. 32, 1589 (2009)

    Google Scholar 

  86. Miller, E.D., et al.: Spatially directed guidance of stem cell population migration by immobilized patterns of growth factors. Biomaterials 32(11), 2775–2785 (2011)

    Article  Google Scholar 

  87. Park, J., et al.: Simple haptotactic gradient generation within a triangular microfluidic channel. Lab Chip 10(16), 2130–2138 (2010)

    Article  Google Scholar 

  88. Kawano, T., Kidoaki, S.: Elasticity boundary conditions required for cell mechanotaxis on microelastically-patterned gels. Biomaterials 32(11), 2725–2733 (2011)

    Article  Google Scholar 

  89. Golomb, B.A., Dang, T.T., Criqui, M.H.: Peripheral arterial disease: morbidity and mortality implications. Circulation 114(7), 688–699 (2006)

    Article  Google Scholar 

  90. Fox, S.B., et al.: Quantitation and prognostic value of breast cancer angiogenesis: comparison of microvessel density, chalkley count, and computer image analysis. J. Pathol. 177(3), 275–283 (1995)

    Article  Google Scholar 

  91. Papo, N., et al.: Antagonistic VEGF variants engineered to simultaneously bind to and inhibit VEGFR2 and {alpha}v{beta}3 integrin. Proc. Nat. Acad. Sci. U.S.A. 108(34), 14067–14072 (2011)

    Article  Google Scholar 

  92. Yang, F., et al.: Genetic engineering of human stem cells for enhanced angiogenesis using biodegradable polymeric nanoparticles. Proc. Nat. Acad. Sci. U.S.A. 107(8), 3317–3322 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah Heilshorn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Benitez, P., Heilshorn, S. (2013). Microfluidic Devices for Quantifying the Role of Soluble Gradients in Early Angiogenesis. In: Reinhart-King, C. (eds) Mechanical and Chemical Signaling in Angiogenesis. Studies in Mechanobiology, Tissue Engineering and Biomaterials, vol 12. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30856-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30856-7_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30855-0

  • Online ISBN: 978-3-642-30856-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics